Identification of cells that are endowed with maximum potency could be critical for the clinical success of cell-based therapies. We investigated whether cells with an enhanced efficacy for cardiac cell therapy could be enriched from adult human skeletal muscle on the basis of their adhesion properties to tissue culture flasks following tissue dissociation. Cells that adhered slowly displayed greater myogenic purity and more readily differentiated into myotubes in vitro than rapidly adhering cells (RACs).
View Article and Find Full Text PDFInjectable biomaterials have been recently investigated as a therapeutic approach for cardiac repair. Porcine-derived small intestinal submucosa (SIS) material is currently used in the clinic to promote accelerated wound healing for a variety of disorders. In this study, we hypothesized that gels derived from SIS extracellular matrix would be advantageous as an injectable material for cardiac repair.
View Article and Find Full Text PDFWe have isolated a population of muscle-derived stem cells (MDSCs) that, when compared with myoblasts, display an improved regeneration capacity, exhibit better cell survival, and improve myogenesis and angiogenesis. In addition, we and others have observed that the origin of the MDSCs may reside within the blood vessel walls (endothelial cells and pericytes). Here, we investigated the role of vascular endothelial growth factor (VEGF)-mediated angiogenesis in MDSC transplantation-based skeletal muscle regeneration in mdx mice (an animal model of muscular dystrophy).
View Article and Find Full Text PDFWe have previously shown that populations of skeletal muscle-derived stem cells (MDSCs) exhibit sex-based differences for skeletal muscle and bone repair, with female cells demonstrating superior engrafting abilities to males in skeletal muscle while male cells differentiating more robustly toward the osteogenic and chondrogenic lineages. In this study, we tested the hypothesis that the therapeutic capacity of MDSCs transplanted into myocardium is influenced by sex of donor MDSCs or recipient. Male and female MDSCs isolated from the skeletal muscle of 3-week-old mice were transplanted into recipient male or female dystrophin-deficient (mdx) hearts or into the hearts of male SCID mice following acute myocardial infarction.
View Article and Find Full Text PDFObjectives: The aim of this study was to evaluate the therapeutic potential of human skeletal muscle-derived myoendothelial cells for myocardial infarct repair.
Background: We have recently identified and purified a novel population of myoendothelial cells from human skeletal muscle. These cells coexpress myogenic and endothelial cell markers and produce robust muscle regeneration when injected into cardiotoxin-injured skeletal muscle.
Objectives: We investigated whether vascular endothelial growth factor (VEGF) was associated with the angiogenic and therapeutic effects induced after transplantation of skeletal muscle-derived stem cells (MDSCs) into a myocardial infarction (MI).
Background: Because very few MDSCs were found to differentiate into new blood vessels when injected into the heart, the mechanism underlying the occurrence of angiogenesis after MDSC transplantation is currently unknown. In the present study, we used a gain- or loss-of-VEGF function approach with skeletal MDSCs engineered to express VEGF or soluble Flt1, a VEGF-specific antagonist, to identify the involvement of VEGF in MDSC transplantation-induced neoangiogenesis.
Myoblast transplantation for cardiac repair has generated beneficial results in both animals and humans; however, poor viability and poor engraftment of myoblasts after implantation in vivo limit their regeneration capacity. We and others have identified and isolated a subpopulation of skeletal muscle-derived stem cells (MDSCs) that regenerate skeletal muscle more effectively than myoblasts. Here we report that in comparison with a myoblast population, MDSCs implanted into infarcted hearts displayed greater and more persistent engraftment, induced more neoangiogenesis through graft expression of vascular endothelial growth factor, prevented cardiac remodeling, and elicited significant improvements in cardiac function.
View Article and Find Full Text PDFCell transplantation is a potential therapy for patients suffering from congestive heart failure. Many cell types have been experimentally tested for their ability to improve cardiac function. In this review, we discuss the potential of cell transplantation into the heart using various cell sources and introduce an attractive new cell source: Muscle-derived stem cells (MDSCs) are capable of delivering therapeutic genes and potentially differentiating toward a cardiomyocyte lineage within an injected heart.
View Article and Find Full Text PDF