Philos Trans A Math Phys Eng Sci
November 2022
Taking as bioinspiration the remarkable acoustic absorption properties of moth wings, we develop a simple analytical model that describes the interaction between acoustic pressure fields, and thin elastic plates incorporating resonant sub-structures. The moth wing is an exemplar of a natural acoustic metamaterial; the wings are deeply subwavelength in thickness at the frequencies of interest, the absorption is broadband and the tiny scales resonate on the moth wing acting in concert. The simplified model incorporates only the essential physics and the scales are idealized to flat rigid rectangular plates coupled via a spring to an elastic plate that forms the wing; all the components are deep-subwavelength at desired frequencies.
View Article and Find Full Text PDFIn noise control applications, a perfect metasurface absorber would have the desirable traits of not only mitigating unwanted sound, but also being much thinner than the wavelengths of interest. Such deep-subwavelength performance is difficult to achieve technologically, yet moth wings, as natural metamaterials, offer functionality as efficient sound absorbers through the action of the numerous resonant scales that decorate their wing membrane. Here, we quantify the potential for moth wings to act as a sound-absorbing metasurface coating for acoustically reflective substrates.
View Article and Find Full Text PDFSensory coevolution has equipped certain moth species with passive acoustic defenses to counter predation by echolocating bats. Some large silkmoths (Saturniidae) possess curved and twisted biosonar decoys at the tip of elongated hindwing tails. These are thought to create strong echoes that deflect biosonar-guided bat attacks away from the moth's body to less essential parts of their anatomy.
View Article and Find Full Text PDFMetamaterials assemble multiple subwavelength elements to create structures with extraordinary physical properties (1-4). Optical metamaterials are rare in nature and no natural acoustic metamaterials are known. Here, we reveal that the intricate scale layer on moth wings forms a metamaterial ultrasound absorber (peak absorption = 72% of sound intensity at 78 kHz) that is 111 times thinner than the longest absorbed wavelength.
View Article and Find Full Text PDFMany moths are endowed with ultrasound-sensitive ears that serve the detection and evasion of echolocating bats. Moths lacking such ears could still gain protection from bat biosonar by using stealth acoustic camouflage, absorbing sound waves rather than reflecting them back as echoes. The thorax of a moth is bulky and hence acoustically highly reflective.
View Article and Find Full Text PDFEmitting ultrasound upon hearing an attacking bat is an effective defence strategy used by several moth taxa. Here we reveal how Yponomeuta moths acquire sophisticated acoustic protection despite being deaf themselves and hence unable to respond to bat attacks. Instead, flying Yponomeuta produce bursts of ultrasonic clicks perpetually; a striated patch in their hind wing clicks as the beating wing rotates and bends.
View Article and Find Full Text PDFThe wings of moths and butterflies are densely covered in scales that exhibit intricate shapes and sculptured nanostructures. While certain butterfly scales create nanoscale photonic effects, moth scales show different nanostructures suggesting different functionality. Here we investigate moth-scale vibrodynamics to understand their role in creating acoustic camouflage against bat echolocation, where scales on wings provide ultrasound absorber functionality.
View Article and Find Full Text PDFJellyfish are a successful and diverse class of animals that swim via jet propulsion, with swimming performance and propulsive efficiency being related to the animal's feeding ecology and body morphology. The Rhizostomeae jellyfish lack tentacles but possess four oral lobes and eight trailing arms at the centre of their bell, giving them a body morphology quite unlike that of other free-swimming medusae. The implications of this body morphology on the mechanisms by which thrust is produced are unknown.
View Article and Find Full Text PDFR Soc Open Sci
February 2018
The chambered nautilus () encounters severe environmental hypoxia during diurnal vertical movements in the ocean. The metabolic cost of locomotion () and swimming performance depend on how efficiently momentum is imparted to the water and how long on-board oxygen stores last. While propulsive efficiency is generally thought to be relatively low in jet propelled animals, the low in indicates that this is not the case.
View Article and Find Full Text PDF