Background And Purpose: With the introduction of Intensity Modulated Radiotherapy (IMRT) and image-guided plan-of-the-day strategies, the treatment of cervical cancer has become more sensitive to intra-fraction uncertainties. In this study we quantified intra-fraction changes in cervix-uterus shape, bladder and rectum filling, and patient setup using pre- and post-fraction CBCT scans.
Materials And Methods: A total of 632 CBCT scans were analyzed for 16 patients with large tip-of-uterus displacement (>2.
Purpose: To evaluate the clinical implementation of an online adaptive plan-of-the-day protocol for nonrigid target motion management in locally advanced cervical cancer intensity modulated radiation therapy (IMRT).
Methods And Materials: Each of the 64 patients had four markers implanted in the vaginal fornix to verify the position of the cervix during treatment. Full and empty bladder computed tomography (CT) scans were acquired prior to treatment to build a bladder volume-dependent cervix-uterus motion model for establishment of the plan library.
Purpose: Automatic, atlas-based segmentation of medical images benefits from using multiple atlases, mainly in terms of robustness. However, a large disadvantage of using multiple atlases is the large computation time that is involved in registering atlas images to the target image. This paper aims to reduce the computation load of multiatlas-based segmentation by heuristically selecting atlases before registration.
View Article and Find Full Text PDFIn a multi-atlas based segmentation procedure, propagated atlas segmentations must be combined in a label fusion process. Some current methods deal with this problem by using atlas selection to construct an atlas set either prior to or after registration. Other methods estimate the performance of propagated segmentations and use this performance as a weight in the label fusion process.
View Article and Find Full Text PDF