Publications by authors named "Thomas R Fox"

Considering the temporal responses of carbon isotope discrimination (Δ13C) to local water availability in the spatial analysis of Δ13C is essential for evaluating the contribution of environmental and genetic facets of plant Δ13C. Using tree-ring Δ13C from years with contrasting water availability at 76 locations across the natural range of loblolly pine, we decomposed site-level Δ13C signals to maximum Δ13C in well-watered conditions (Δ13Cmax) and isotopic drought sensitivity (m) as a change in Δ13C per unit change of Palmer's Drought Severity Index (PDSI). Site water status, especially the tree lifetime average PDSI, was the primary factor affecting Δ13Cmax.

View Article and Find Full Text PDF

Drought frequency and intensity are projected to increase throughout the southeastern USA, the natural range of loblolly pine (Pinus taeda L.), and are expected to have major ecological and economic implications. We analyzed the carbon and oxygen isotopic compositions in tree ring cellulose of loblolly pine in a factorial drought (~30% throughfall reduction) and fertilization experiment, supplemented with trunk sap flow, allometry and microclimate data.

View Article and Find Full Text PDF

Concern over rising atmospheric CO2 and other greenhouse gases due to fossil fuel combustion has intensified research into carbon-neutral energy production. Approximately 15.8 million ha of pine plantations exist across the southeastern United States, representing a vast land area advantageous for bioenergy production without significant landuse change or diversion of agricultural resources from food production.

View Article and Find Full Text PDF

Intra-annual nutrient (nitrogen, phosphorus, potassium, calcium and magnesium) flux was quantified for Pinus taeda L. at a nutrient-poor, well-drained sandy site in Scotland County, NC, USA where a 2 × 2 factorial of irrigation and nutrition was applied in four replications in a 10-year-old stand with 1200 stems ha(-1). Treatments were applied with the goal of providing optimum nutrition (no nutritional deficiencies) and water availability.

View Article and Find Full Text PDF

We quantified nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) content, use (nutrient amount for one growth year), retranslocation (nutrients recycled before foliage senescence), uptake (use minus retranslocation), volume production per unit of uptake and fertilizer-uptake efficiency (percent applied taken up) in a 2 x 2 (nutrient and water) factorial experiment replicated four times in an 8-year-old loblolly pine (Pinus taeda L.) stand growing on a nutrient-poor sandy soil in Scotland County, North Carolina, USA. Over 14 years, we applied 1140, 168, 393, 168 and 146 kg ha(-1) of elemental N, P, K, Ca and Mg fertilizer, respectively, and an average of 710 mm year(-1) of irrigation.

View Article and Find Full Text PDF