Virus-like particles (VLPs) used as vaccine antigens often elicit strong immune responses due to their intrinsic repetitive, high-density display of epitopes, and the fact that the mammalian immune system is highly attuned to recognizing particles in the size range of viruses (20-150 nm). To retain these immunogenic qualities, vaccines that utilize virus-like particle (VLP) antigens should be formulated to stabilize both native conformational epitopes and the overall particulate nature of the VLP. This work describes a systematic approach for identifying potential stabilizers for formulation of Norwalk VLPs (NV-VLPs) in aqueous suspension.
View Article and Find Full Text PDFGreater than 99% of the Norwalk virus (NV) capsid consists of 180 copies of a single 58-kDa protein. Recombinantly expressed monomers self-assemble into virus-like particles (VLPs) with a well defined icosahedral structure. NV-VLPs are an appropriate vaccine antigen since the antigenic determinants of the parent virion are preserved.
View Article and Find Full Text PDFThe integral membrane protein flavocytochrome b (Cyt b) is the catalytic core of the human phagocyte NADPH oxidase, an enzyme complex that initiates a cascade of reactive oxygen species important in the elimination of infectious agents. This study reports the generation and characterization of six mAbs (NS1, NS2, NS5, CS6, CS8, and CS9) that recognize the p22(phox) subunit of the Cyt b heterodimer. Each of the mAbs specifically detected p22(phox) by Western blot analysis but did not react with intact neutrophils in FACS studies.
View Article and Find Full Text PDFThe integral membrane protein flavocytochrome b (Cyt b) comprises the catalytic core of the human phagocyte NADPH oxidase complex and serves to initiate a cascade of reactive oxygen species that participate in the elimination of infectious agents. Superoxide production by the NADPH oxidase complex has been shown to be specifically regulated by the enzymatic generation of lipid second messengers following phagocyte activation. In the present study, a Cyt b-specific monoclonal antibody (mAb 44.
View Article and Find Full Text PDFmAb NL7 was raised against purified flavocytochrome b(558), important in host defense and inflammation. NL7 recognized the gp91(phox) flavocytochrome b(558) subunit by immunoblot and bound to permeabilized neutrophils and neutrophil membranes. Epitope mapping by phage display analysis indicated that NL7 binds the (498)EKDVITGLK(506) region of gp91(phox).
View Article and Find Full Text PDFFlavocytochrome b (Cyt b) is a heterodimeric, integral membrane protein that serves as the central component of an electron transferase system employed by phagocytes for elimination of bacterial and fungal pathogens. This report describes a rapid and efficient single-step purification of Cyt b from human neutrophil plasma membranes by solubilization in the nonionic detergent dodecylmaltoside (DDM) and immunoaffinity chromatography. A similar procedure for isolation of Cyt b directly from intact neutrophils by a combination of heparin and immunoaffinity chromatography is also presented.
View Article and Find Full Text PDFAnionic amphiphiles such as sodium- and lithium dodecyl sulfate (SDS, LDS), or arachidonate (AA) initiate NADPH oxidase and proton channel activation in cell-free systems and intact neutrophils. To investigate whether these amphiphiles exert allosteric effects on cytochrome b, trisulfopyrenyl-labeled wheat germ agglutinin (Cascade Blue-wheat germ agglutinin, CCB-WGA) was used as an extrinsic fluorescence donor for resonance energy transfer (RET) to the intrinsic heme acceptors of detergent-solubilized cytochrome b. In solution, cytochrome b complexed with the CCB-WGA causing a rapid, saturable, carbohydrate-dependent quenching of up to approximately 55% of the steady-state fluorescence.
View Article and Find Full Text PDFCascade Blue acetyl azide is an amine reactive compound with spectral properties ideally suited for fluorescence resonance energy transfer (FRET) studies in which heme prosthetic groups serve as acceptors. To demonstrate utility of the Cascade Blue-heme spectroscopic ruler, cytochrome c was employed as a test case to calibrate distance measurements obtained from FRET analysis. Following modification, stoichiometrically labeled cytochrome c was digested with trypsin and derivatized fragments were analyzed by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry to identify Lys25 as the predominant site of covalent modification.
View Article and Find Full Text PDF