Publications by authors named "Thomas Pruschke"

Transport experiments in strong magnetic fields show a variety of fascinating phenomena like the quantum Hall effect, weak localization or the giant magnetoresistance. Often they originate from the atomic-scale structure inaccessible to macroscopic magnetotransport experiments. To connect spatial information with transport properties, various advanced scanning probe methods have been developed.

View Article and Find Full Text PDF

We present evidence for Mott quantum criticality in an anisotropic two-dimensional system of coupled Hubbard chains at half-filling. In this scenario emerging from variational cluster approximation and cluster dynamical mean-field theory, the interchain hopping t_{⊥} acts as a control parameter driving the second-order critical end point T_{c} of the metal-insulator transition down to zero at t_{⊥}^{c}/t≃0.2.

View Article and Find Full Text PDF

The interplay between the Ruderman-Kittel-Kasuya-Yosida interaction and the Kondo effect is expected to provide the driving force for the emergence of many phenomena in strongly correlated electron materials. Two magnetic impurities in a metal are the smallest possible system containing all these ingredients and define a bottom-up approach towards a long-term understanding of concentrated/dense systems. Here we report on the experimental and theoretical investigation of iron dimers buried below a Cu(100) surface by means of low-temperature scanning tunnelling spectroscopy combined with density functional theory and numerical renormalization group calculations.

View Article and Find Full Text PDF

The explanation of heavy-fermion superconductivity is a long-standing challenge to theory. It is commonly thought to be connected to nonlocal fluctuations of either spin or charge degrees of freedom and therefore of unconventional type. Here we present results for the Kondo-lattice model, a paradigmatic model to describe heavy-fermion compounds, obtained from dynamical mean-field theory which captures local correlation effects only.

View Article and Find Full Text PDF

We investigate the possibility to assist the numerically ill-posed calculation of spectral properties of interacting quantum systems in thermal equilibrium by extending the imaginary-time simulation to a finite Schwinger-Keldysh contour. The effect of this extension is tested within the standard maximum entropy approach to analytic continuation. We find that the inclusion of real-time data improves the resolution of structures at high energy, while the imaginary-time data are needed to correctly reproduce low-frequency features such as quasiparticle peaks.

View Article and Find Full Text PDF

We propose the notion of a spin-selective Kondo insulator, which provides a fundamental mechanism to describe the ferromagnetic phase of the Kondo lattice model with antiferromagnetic coupling. This unveils a remarkable feature of the ferromagnetic metallic phase: the majority-spin conduction electrons show metallic while the minority-spin electrons show insulating behavior. The resulting Kondo gap in the minority-spin sector, which is due to the cooperation of ferromagnetism and partial Kondo screening, evidences a dynamically induced commensurability for a combination of minority-spin electrons and parts of localized spins.

View Article and Find Full Text PDF

The natural mineral azurite Cu(3)(CO(3))(2)(OH)(2) is a frustrated magnet displaying unusual and controversially discussed magnetic behavior. Motivated by the lack of a unified description for this system, we perform a theoretical study based on density functional theory as well as state-of-the-art numerical many-body calculations. We propose an effective generalized spin-1/2 diamond chain model which provides a consistent description of experiments: low-temperature magnetization, inelastic neutron scattering, nuclear magnetic resonance measurements, magnetic susceptibility as well as new specific heat measurements.

View Article and Find Full Text PDF

We study the thermodynamic properties of the 3D Hubbard model for temperatures down to the Néel temperature by using cluster dynamical mean-field theory. In particular, we calculate the energy, entropy, density, double occupancy, and nearest-neighbor spin correlations as a function of chemical potential, temperature, and repulsion strength. To make contact with cold-gas experiments, we also compute properties of the system subject to an external trap in the local density approximation.

View Article and Find Full Text PDF

We present an algorithm for the analytic continuation of imaginary-time quantum Monte Carlo data which is strictly based on principles of Bayesian statistical inference. Within this framework we are able to obtain an explicit expression for the calculation of a weighted average over possible energy spectra, which can be evaluated by standard Monte Carlo simulations, yielding as by-product also the distribution function as function of the regularization parameter. Our algorithm thus avoids the usual ad hoc assumptions introduced in similar algorithms to fix the regularization parameter.

View Article and Find Full Text PDF

A pyrazolate-based binucleating ligand HL with pyridyl groups in the chelate arms has been used to synthesize the dinickel(II) complex [LNi2(N3)(MeOH)2](ClO4)2 (1) and the corresponding 1D polymeric [LNi2(mu-N3)2]n(NO3)n (2) depending on the amount of NaN3 added. X-Ray crystallography shows that structural parameters of the (LNi2(N3)) units are very similar in both compounds. This is ascribed to pi-pi stacking between the pyridyl rings that leads to rigidification of the framework and a fixed cis-orientation of the remaining coordination sites, which are filled by MeOH molecules in or by a mu1,3-bridging azide that connects the subunits in 2.

View Article and Find Full Text PDF

By using the compartmental dinucleating pyrazolate ligand HL, dinickel(II) complexes [LNi2(micro-N3)(acetone)2]X2 (1: X = CIO4; 2: X = BPh4) and tetranickel(II) complex [{LNi2(micro-N3)(MeOH)2](CI04)4 (3) have been prepared and structurally characterized. Complexes 1 and 2 differ in the torsion along the bridging micro-1,3-azide moiety, while the azido ligands in 3 adopt an unusual micro-1,1,3 bridging mode to connect the two subunits. All three complexes show overall antiferromagnetic coupling and an S = 0 ground state, but the torsion along the azide moiety is a determining factor for the coupling strength.

View Article and Find Full Text PDF

The recently reported unusual behavior of the static and dynamical magnetic susceptibility as well as the specific heat in Ce(1-x)La(x)Ni9Ge4 has raised the question of a possible non-Fermi-liquid ground state in this material. We argue that for a consistent physical picture the crystal-field splitting of two low-lying magnetic doublets of the Ce 4f-shell must be taken into account. Furthermore, we show that for a splitting of the order of the low temperature scale T* of the system a crossover behavior between an SU(4) and an SU(2) Kondo effect is found.

View Article and Find Full Text PDF