Publications by authors named "Thomas Priest"

Nano-scale particles sized 10-400 nm administered systemically preferentially extravasate from tumor vasculature due to the enhanced permeability and retention effect. Therapeutic success remains elusive, however, because of inhomogeneous particle distribution within tumor tissue. Insufficient tumor vascularization limits particle transport and also results in avascular hypoxic regions with non-proliferating cells, which can regenerate tissue after nanoparticle-delivered cytotoxicity or thermal ablation.

View Article and Find Full Text PDF

In this multidisciplinary study the chemical reduction synthesis of novel gold clusters in solution was combined with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state, and ligand substitution influences their gas-phase fragmentation pathways. Ultrasmall cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (dcpp) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented by employing collision-induced dissociation (CID) and the product ions were analyzed using MS.

View Article and Find Full Text PDF

Monodisperse gold clusters have been prepared on surfaces in different charge states through soft landing of mass-selected ions. Ligand-stabilized gold clusters were prepared in methanol solution by reduction of chloro(triphenylphosphine)gold(I) with borane tert-butylamine complex in the presence of 1,3-bis(diphenylphosphino)propane. Electrospray ionization was used to introduce the clusters into the gas phase, and mass selection was employed to isolate a single ionic cluster species (Au(11)L(5)(3+), L = 1,3-bis(diphenylphosphino)propane), which was delivered to surfaces at well-controlled kinetic energies.

View Article and Find Full Text PDF

Preparation of clean monodisperse samples of clusters and nanoparticles for characterization using cutting-edge analytical techniques is essential to understanding their size-dependent properties. Herein, we report a general method for the preparation of high surface coverage samples of monodisperse clusters containing an exact number of atoms. Polydisperse solutions of diphosphine-capped gold clusters were produced by reduction synthesis.

View Article and Find Full Text PDF