Publications by authors named "Thomas Pohlmann"

Phthalate esters (PAEs) have been investigated in paired air and seawater samples collected onboard the research vessel SONNE in the South China Sea in the summer of 2019. The concentrations of ∑PAEs ranged from 2.84 to 24.

View Article and Find Full Text PDF

Organophosphate esters (OPEs) have become one group of chemicals with emerging concern in the marine environment. In this work, we investigated OPEs in the air and seawater of the South China Sea in summer 2019. The concentrations of ∑OPEs in the atmosphere ranged from 66 to 550 pg/m, with TCIPP, TNBP, TPhP, and TEP predominating in the air.

View Article and Find Full Text PDF

Climate change affects the marine environment on many levels with profound consequences for numerous biological, chemical, and physical processes. Benthic bioturbation is one of the most relevant and significant processes for benthic-pelagic coupling and biogeochemical fluxes in marine sediments, such as the uptake, transport, and remineralisation of organic carbon. However, only little is known about how climate change affects the distribution and intensity of benthic bioturbation of a shallow temperate shelf sea system such as the southern North Sea.

View Article and Find Full Text PDF
Article Synopsis
  • Estrogenic substances, both natural and synthetic, are a growing environmental concern due to their potential impact on the endocrine systems of living organisms.
  • Research conducted in the South China Sea found high levels of specific estrogens, particularly natural hormones and synthetic compounds, with the highest concentrations near the coast.
  • The study indicates that marine organisms in the area may be at significant risk from exposure to these estrogenic compounds, showing variability in distribution over time and space.
View Article and Find Full Text PDF

Climate change is a global threat for marine ecosystems, their biodiversity and consequently ecosystem services. In the marine realm, marine protected areas (MPAs) were designated to counteract regional pressures, but they might be ineffective to protect vulnerable species and habitats, if their distribution is affected by global climate change. We used six Species Distribution Models (GLM, MARS, FDA, RF, GBM, MAXENT) to project changes in the distribution of eight benthic indicator and key species under climate change in the North Sea MPAs for 2050 and 2099.

View Article and Find Full Text PDF

mRNA transport determines spatiotemporal protein expression. Transport units are higher-order ribonucleoprotein complexes containing cargo mRNAs, RNA-binding proteins and accessory proteins. Endosomal mRNA transport in fungal hyphae belongs to the best-studied translocation mechanisms.

View Article and Find Full Text PDF

Active movement of mRNAs by sophisticated transport machineries determines precise spatiotemporal expression of encoded proteins. A prominent example discovered in fungi is microtubule-dependent transport via endosomes. This mode of transport was thought to be only operational in the basidiomycete Ustilago maydis.

View Article and Find Full Text PDF
Article Synopsis
  • Eukaryotic cells depend on precise timing and location for protein synthesis, facilitated by the localized translation of mRNAs to specific subcellular areas.
  • The process of mRNA localization involves active transport along the actin or microtubule cytoskeleton, utilizing molecular motors, adaptors, and RNA-binding proteins for recognition.
  • Research on fungal models like Saccharomyces cerevisiae has revealed key insights, including the need for synergistic RNA-binding protein interaction, structural changes in RNA upon recognition, and the connection of mRNA transport to membrane trafficking.
View Article and Find Full Text PDF

In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis.

View Article and Find Full Text PDF

The mitochondrial alternative oxidase is an important enzyme that allows respiratory activity and the functioning of the Krebs cycle upon disturbance of the respiration chain. It works as a security valve in transferring excessive electrons to oxygen, thereby preventing potential damage by the generation of harmful radicals. A clear biological function, besides the stress response, has so far convincingly only been shown for plants that use the alternative oxidase to generate heat to distribute volatiles.

View Article and Find Full Text PDF

An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae.

View Article and Find Full Text PDF

Microtubules (MTs) are pivotal for numerous eukaryotic processes ranging from cellular morphogenesis, chromosome segregation to intracellular transport. Execution of these tasks requires intricate regulation of MT dynamics. Here, we identify a new regulator of the Schizosaccharomyces pombe MT cytoskeleton: Asp1, a member of the highly conserved Vip1 inositol polyphosphate kinase family.

View Article and Find Full Text PDF

Long-distance transport of mRNAs is important in determining polarity in eukaryotes. Molecular motors shuttle large ribonucleoprotein complexes (mRNPs) containing RNA-binding proteins and associated factors along microtubules. However, precise mechanisms including the interplay of molecular motors and a potential connection to membrane trafficking remain elusive.

View Article and Find Full Text PDF

The maize pathogen Ustilago maydis has to undergo various morphological transitions for the completion of its sexual life cycle. For example, haploid cells respond to pheromone by forming conjugation tubes that fuse at their tips. The resulting dikaryon grows filamentously, expanding rapidly at the apex and inserting retraction septa at the basal pole.

View Article and Find Full Text PDF

The Siak is a typical, nutrient-poor, well-mixed, black water river in central Sumatra, Indonesia, which owes its brown color to dissolved organic matter (DOM) leached from surrounding, heavily disturbed peat soils. We measured dissolved organic carbon (DOC) and oxygen concentrations along the river, carried out a 36-h experiment in the province capital Pekanbaru and quantified organic matter and nutrient inputs from urban wastewater channels into the Siak. In order to consider the complex dynamic of oxygen in rivers, a box-diffusion model was used to interpret the measured data.

View Article and Find Full Text PDF

Cytoskeletal transport promotes polar growth in filamentous fungi. In Ustilago maydis, the RNA-binding protein Rrm4 shuttles along microtubules and is crucial for polarity in infectious filaments. Mutations in the RNA-binding domain cause loss of function.

View Article and Find Full Text PDF

Mass budgets of hexachlorocyclohexanes (alpha-HCH and gamma-HCH) and a polychlorinated biphenyl (PCB 153) for 1995--2001 were calculated based on model simulations and observations for the North Sea as a whole and the German Bight, a coastal shallow subregion. For the North Sea the air-sea fluxes of the three pollutants were net depositional and dominated by local sources (gamma-HCH and PCB 153) or atmospheric deposition (alpha-HCH). The air-sea fluxes were net volatilizational in the German Bight.

View Article and Find Full Text PDF

The F pocket of major histocompatibility complex (in humans HLA) class I molecules accommodates the C terminus of the bound peptide. Residues forming this pocket exhibit considerable polymorphism, and a single difference (Asp116 in HLA-B*2705 and His116 in HLA-B*2709 heavy chains) confers differential association of these two HLA-B27 subtypes to the autoimmune disease ankylosing spondylitis. As peptide presentation by HLA molecules is of central importance for immune responses, we performed thermodynamic (circular dichroism, differential scanning calorimetry, fluorescence polarization) and X-ray crystallographic analyses of both HLA-B27 subtypes complexed with the epidermal growth factor response factor 1-derived self-peptide TIS (RRLPIFSRL) to understand the impact of the Asp116His exchange on peptide display.

View Article and Find Full Text PDF

Peptide presentation by major histocompatibility complex (MHC) molecules is of central importance for immune responses, which are triggered through recognition of peptide-loaded MHC molecules (pMHC) by cellular ligands such as T-cell receptors (TCR). However, a unifying link between structural features of pMHC and cellular responses has not been established. Instead, pMHC/TCR binding studies suggest conformational and/or flexibility changes of the binding partners as a possible cause of differential T-cell stimulation, but information on real-time dynamics is lacking.

View Article and Find Full Text PDF

Rheopheresis is a specific application of membrane differential filtration, synonymous with double filtration plasmapheresis, for extracorporeal hemorheotherapy. Safety and efficacy of Rheopheresis for wound healing and skin oxygenation were investigated in patients with ischemic diabetic foot syndrome. Eight patients with type 2 diabetes mellitus and non-healing foot ulcers caused by severe ischemic diabetic foot syndrome were treated by a series of seven Rheopheresis sessions in a time span of 11 weeks.

View Article and Find Full Text PDF