Purpose: The global Assessing long-teRm Outcomes in dupiluMAb (AROMA) registry study aims to characterize the long-term, real-world use of dupilumab in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). This paper reports interim analysis of the baseline characteristics for the first 303 patients enrolled in AROMA.
Methods And Materials: AROMA is currently ongoing in adult patients with CRSwNP who initiated dupilumab for up to 36 months.
A significantly improved viral 2A peptide system for dependable high-level expression of dicistronic genes in Chlamydomonas reinhardtii has been developed. Data are presented demonstrating that use of an especially proficient 'extended FMDV 2A' coding region allows production of two independent protein products from a dicistronic gene with almost complete efficiency. Importantly, results are also presented that demonstrate the utility of this 2A system for efficient high-level expression of foreign genes in C.
View Article and Find Full Text PDFPosttranslational modification of proteins by small ubiquitin-like modifier (SUMO) is required for survival of virtually all eukaryotic organisms. Attachment of SUMO to target proteins is catalyzed by SUMO E2 conjugase. All haploid or diploid eukaryotes studied to date possess a single indispensable SUMO conjugase.
View Article and Find Full Text PDFThe clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has become a powerful and precise tool for targeted gene modification (e.g., gene knockout and gene replacement) in numerous eukaryotic organisms.
View Article and Find Full Text PDFFluorescent proteins (FPs) have become essential tools for a growing number of fields in biology. However, such tools have not been widely adopted for use in microalgal research. The aim of this study was to express and compare six FPs (blue mTagBFP, cyan mCerulean, green CrGFP, yellow Venus, orange tdTomato and red mCherry) in the popular model microalga Chlamydomonas reinhardtii.
View Article and Find Full Text PDFThe availability of the complete DNA sequence of the Chlamydomonas reinhardtii genome and advanced computational biology tools has allowed elucidation and study of the small ubiquitin-like modifier (SUMO) system in this unicellular photosynthetic alga and model eukaryotic cell system. SUMO is a member of a ubiquitin-like protein superfamily that is covalently attached to target proteins as a post-translational modification to alter the localization, stability, and/or function of the target protein in response to changes in the cellular environment. Three SUMO homologs (CrSUMO96, CrSUMO97, and CrSUMO148) and three novel SUMO-related proteins (CrSUMO-like89A, CrSUMO-like89B, and CrSUMO-like90) were found by diverse gene predictions, hidden Markov models, and database search tools inferring from Homo sapiens, Saccharomyces cerevisiae, and Arabidopsis thaliana SUMOs.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.