Controlling fluid flow in microfluidic devices and adapting it to varying conditions by selectively regulating hydrodynamic properties is of critical importance, as the field of microfluidics faces increasingly complex challenges in its wide range of applications. One way to manipulate flows in microfluidic devices is to introduce elastic elements that can be actively or passively deformed. In this work, we developed a membrane-based microfluidic device that allows us to study the deformation of swollen thin membranes as a function of the volume fractions in binary mixtures - here isopropanol and water.
View Article and Find Full Text PDFSurface attachment of bacteria is the first step of biofilm formation and is often mediated and coordinated by the extracellular appendages, flagellum and pili. The model organism Caulobacter crescentus undergoes an asymmetric division cycle, giving rise to a motile "swarmer cell" and a sessile "stalked cell", which is attached to the surface. In the highly polarized predivisional cell, pili and flagellum, which are assembled at the pole opposite the stalk, are both activated before and during the process of cell separation.
View Article and Find Full Text PDFA photocatalytic thiol-ene aqueous emulsion polymerization under visible-light is described to prepare linear semicrystalline latexes using 2,2'-dimercaptodiethyl sulfide as dithiol and various dienes. The procedure involves low irradiance (3 mW cm ), LED irradiation source, eosin-Y disodium as organocatalyst, low catalyst loading (<0.05% mol), and short reaction time scales (<1 h).
View Article and Find Full Text PDFOur work focuses on the development of simpler and effective production of nanofluidic devices for high-throughput charged single nanoparticle trapping in an aqueous environment. Single nanoparticle confinement using electrostatic trapping has been an effective approach to study the fundamental properties of charged molecules under a controlled aqueous environment. Conventionally, geometry-induced electrostatic trapping devices are fabricated using SiOx-based substrates and comprise nanochannels imbedded with nanoindentations such as nanopockets, nanoslits and nanogrids.
View Article and Find Full Text PDFWe studied the origin of breaking the symmetry for moving circular contact lines of dewetting polymer films suspended on a periodic array of pillars. There, dewetting force fields driving polymer flow were perturbed by elastic micro-pillars arranged in a regular square pattern. Elastic restoring forces of deformed pillars locally balance driving capillary forces and broke the circular symmetry of expanding dewetting holes.
View Article and Find Full Text PDFWe examined the formation of self-seeded platelet-like crystals from polystyrene--polyethylene oxide (PS--PEO) diblock copolymers in toluene as a function of polymer concentration (c), crystallization temperature (TC), and self-seeding temperature (TSS). We showed that the number (N) of platelet-like crystals and their mean lateral size (L) can be controlled through a self-seeding procedure. As (homogeneous) nucleation was circumvented by the self-seeding procedure, N did not depend on TC.
View Article and Find Full Text PDFAtherosclerosis gives rise to blood vessel occlusion associated with blood flow alteration and substantial increase of average wall shear stress. This modification was proved acting as a purely physical trigger for targeted vasodilator release from a particular type of liposomes composed of 1,3-diaminophospholipids (Pad-PC-Pad). The flow-induced structural changes of these faceted liposomes, however, are completely unknown.
View Article and Find Full Text PDFBacterial surface attachment is mediated by filamentous appendages called pili. Here, we describe the role of Tad pili during surface colonization of Using an optical trap and microfluidic controlled flow conditions to mimic natural environments, we demonstrated that Tad pili undergo repeated dynamic cycles of extension and retraction. Within seconds after establishing surface contact, pilus retraction reorients cells into an upright position, promoting walking-like movements against the medium flow.
View Article and Find Full Text PDFMuch is still not understood about how gene regulatory interactions control cell fate decisions in single cells, in part due to the difficulty of directly observing gene regulatory processes in vivo. We introduce here a novel integrated setup consisting of a microfluidic chip and accompanying analysis software that enable long-term quantitative tracking of growth and gene expression in single cells. The dual-input Mother Machine (DIMM) chip enables controlled and continuous variation of external conditions, allowing direct observation of gene regulatory responses to changing conditions in single cells.
View Article and Find Full Text PDFTrapping and manipulation of nano-objects in solution are of great interest and have emerged in a plethora of fields spanning from soft condensed matter to biophysics and medical diagnostics. We report on establishing a nanofluidic system for reliable and contact-free trapping as well as manipulation of charged nano-objects using elastic polydimethylsiloxane (PDMS)-based materials. This trapping principle is based on electrostatic repulsion between charged nanofluidic walls and confined charged objects, called geometry-induced electrostatic (GIE) trapping.
View Article and Find Full Text PDFWhen bacteria encounter surfaces, they respond with surface colonization and virulence induction. The mechanisms of bacterial mechanosensation and downstream signaling remain poorly understood. Here, we describe a tactile sensing cascade in in which the flagellar motor acts as sensor.
View Article and Find Full Text PDFSeeing physiological processes at the nanoscale in living organisms without labeling is an ultimate goal in life sciences. Using X-ray ptychography, we explored in situ the dynamics of unstained, living fission yeast Schizosaccharomyces pombe cells in natural, aqueous environment at the nanoscale. In contrast to previous X-ray imaging studies on biological matter, in this work the eukaryotic cells were alive even after several ptychographic X-ray scans, which allowed us to visualize the chromatin motion as well as the autophagic cell death induced by the ionizing radiation.
View Article and Find Full Text PDFLiposomes formulated from the 1,3-diamidophospholipid Pad-PC-Pad are shear-responsive and thus promising nano-containers to specifically release a vasodilator at stenotic arteries. The recommended preclinical safety tests for therapeutic liposomes of nanometer size include the in vitro assessment of complement activation and the evaluation of the associated risk of complement activation-related pseudo-allergy (CARPA) in vivo. For this reason, we measured complement activation by Pad-PC-Pad formulations in human and porcine sera, along with the nanopharmaceutical-mediated cardiopulmonary responses in pigs.
View Article and Find Full Text PDFExisting approaches to red blood cell (RBC) experiments on the single-cell level usually rely on chemical or physical manipulations that often cause difficulties with preserving the RBC's integrity in a controlled microenvironment. Here, we introduce a straightforward, self-filling microfluidic device that autonomously separates and isolates single RBCs directly from unprocessed human blood samples and confines them in diffusion-controlled microchambers by solely exploiting their unique intrinsic properties. We were able to study the photo-induced oxygenation cycle of single functional RBCs by Raman microscopy without the limitations typically observed in optical tweezers based methods.
View Article and Find Full Text PDFCombining microfluidics with coherent X-ray illumination offers the possibility to not only measure the structure but also the dynamics of flowing samples in a single-scattering experiment. Here, the power of this combination is demonstrated by studying the advective and Brownian dynamics of colloidal suspensions in microflow of different geometries. Using an experimental setup with a fast two-dimensional detector and performing X-ray correlation spectroscopy by calculating two-dimensional maps of the intensity auto-correlation functions, it was possible to evaluate the sample structure and furthermore to characterize the detailed flow behavior, including flow geometry, main flow directions, advective flow velocities and diffusive dynamics.
View Article and Find Full Text PDFThe determination of in situ structural information of soft matter under flow is challenging, as it depends on many factors, such as temperature, concentration, confinement, channel geometry, and type of imposed flow. Here, we combine microfluidics and scanning small-angle X-ray scattering (scanning-SAXS) to create a two-dimensional spatially resolved map, which represents quantitatively the variation of molecular properties under flow. As application examples, mappings of confined amyloid fibrils and wormlike micelles under flow into various channel geometries are compared.
View Article and Find Full Text PDFTrends Parasitol
July 2016
Motility is a key factor for pathogenicity of unicellular parasites, enabling them to infiltrate and evade host cells, and perform several of their life-cycle events. State-of-the-art methods of motility analysis rely on a combination of optical tweezers with high-resolution microscopy and microfluidics. With this technology, propulsion forces, energies, and power generation can be determined so as to shed light on the motion mechanisms, chemotactic behavior, and specific survival strategies of unicellular parasites.
View Article and Find Full Text PDFThe physical properties of polymeric actin facilitate many mechanical processes within the cell, including cellular deformation and locomotion, whereby the polymers can be confined to a range of different geometries. As actin polymers often form entangled solutions in the cell, we have investigated the effect of confinement on the evolution of entangled semiflexible polymer solutions. Using a microfluidic platform, we examined the physical dynamics of actin polymers confined within narrow (2-4 μm) rectangular channels.
View Article and Find Full Text PDFUnderstanding the cytoskeletal functionality and its relation to other cellular components and properties is a prominent question in biophysics. The dynamics of actin cytoskeleton and its polymorphic nature are indispensable for the proper functioning of living cells. Actin bundles are involved in cell motility, environmental exploration, intracellular transport and mechanical stability.
View Article and Find Full Text PDFWe present a single cell viability assay, based on chemical gradient microfluidics in combination with optical micromanipulation. Here, we used this combination to in situ monitor the effects of drugs and chemicals on the motility of the flagellated unicellular parasite Trypanosoma brucei; specifically, the local cell velocity and the mean squared displacement (MSD) of the cell trajectories. With our method, we are able to record in situ cell fixation by glutaraldehyde, and to quantify the critical concentration of 2-deoxy-d-glucose required to completely paralyze trypanosomes.
View Article and Find Full Text PDFUnicellular parasites have developed sophisticated swimming mechanisms to survive in a wide range of environments. Cell motility of African trypanosomes, parasites responsible for fatal illness in humans and animals, is crucial both in the insect vector and the mammalian host. Using millisecond-scale imaging in a microfluidics platform along with a custom made optical trap, we are able to confine single cells to study trypanosome motility.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2014
The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom-transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution.
View Article and Find Full Text PDFPurpose: To study the biorelevant drug release from novel starch-based polyvinyl alcohol capsules (S-PVA-C). The effect of the shell material is studied by considering microstructural formulation changes during hydration.
Methods: Two different self-emulsifying systems containing either fenofibrate or probucol were filled in S-PVA-C, as well as capsules of gelatin (SGC) and starch (VegaGels®).
Blood is a remarkable habitat: it is highly viscous, contains a dense packaging of cells and perpetually flows at velocities varying over three orders of magnitude. Only few pathogens endure the harsh physical conditions within the vertebrate bloodstream and prosper despite being constantly attacked by host antibodies. African trypanosomes are strictly extracellular blood parasites, which evade the immune response through a system of antigenic variation and incessant motility.
View Article and Find Full Text PDFThe design of multifunctional systems is in focus today as a key strategy for coping with complex challenges in various domains that include chemistry, medicine, environmental sciences, and technology. Herein, we introduce protein-containing polymer nanoreactors with dual functionality: peroxynitrite degradation and oxygen transport. Vesicles made of poly-(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated hemoglobin (Hb), which serves as a model protein because of its dual function in oxygen transport and peroxynitrite degradation.
View Article and Find Full Text PDF