Raman spectroscopy enables the non-destructive characterization of chemical composition, crystallinity, defects, or strain in countless materials. However, the Raman response of surfaces or thin films is often weak and obscured by dominant bulk signals. Here we overcome this limitation by placing a transferable porous gold membrane, (PAuM) on the surface of interest.
View Article and Find Full Text PDFWe describe a bottom-up surface functionalization to design hybrid molecular coatings that tether biomembranes using wet chemistry. First, a monolayer was formed by immersion in a NH-Ar-SOH solution, allowing aryldiazonium salt radicals to spontaneously bind to it via strong C bonding. After formation of the air-stable and dense molecular monolayer (-Ar-SOH), a subsequent activation was used to form highly reactive -Ar-SOCl groups nearly perpendicular to the monolayer.
View Article and Find Full Text PDFThe superior colliculus (SC) integrates information from multiple sensory modalities to facilitate the detection and localization of salient events. The efficacy of "multisensory integration" is traditionally measured by comparing the magnitude of the response elicited by a cross-modal stimulus to the responses elicited by its modality-specific component stimuli, and because there is an element of randomness in the system, these calculations are made using response values averaged over multiple stimulus presentations in an experiment. Recent evidence suggests that multisensory integration in the SC is highly plastic and these neurons adapt to specific anomalous stimulus configurations.
View Article and Find Full Text PDFThere is now a good deal of data from neurophysiological studies in animals and behavioral studies in human infants regarding the development of multisensory processing capabilities. Although the conclusions drawn from these different datasets sometimes appear to conflict, many of the differences are due to the use of different terms to mean the same thing and, more problematic, the use of similar terms to mean different things. Semantic issues are pervasive in the field and complicate communication among groups using different methods to study similar issues.
View Article and Find Full Text PDFSensory processing disorder (SPD) is characterized by anomalous reactions to, and integration of, sensory cues. Although the underlying etiology of SPD is unknown, one brain region likely to reflect these sensory and behavioral anomalies is the superior colliculus (SC), a structure involved in the synthesis of information from multiple sensory modalities and the control of overt orientation responses. In the present review we describe normal functional properties of this structure, the manner in which its individual neurons integrate cues from different senses, and the overt SC-mediated behaviors that are believed to manifest this "multisensory integration.
View Article and Find Full Text PDFSingle-neuron studies provide a foundation for understanding many facets of multisensory integration. These studies have used a variety of criteria for identifying and quantifying multisensory integration. While a number of techniques have been used, an explicit discussion of the assumptions, criteria, and analytical methods traditionally used to define the principles of multisensory integration is lacking.
View Article and Find Full Text PDFIt has recently been demonstrated that the maturation of normal multisensory circuits in the cortex of the cat takes place over an extended period of postnatal life. Such a finding suggests that the sensory experiences received during this time may play an important role in this developmental process. To test the necessity of sensory experience for normal cortical multisensory development, cats were raised in the absence of visual experience from birth until adulthood, effectively precluding all visual and visual-nonvisual multisensory experiences.
View Article and Find Full Text PDFThe superior colliculus (SC) plays an important role in integrating visual, auditory and somatosensory information, and in guiding the orientation of the eyes, ears and head. Previously we have shown that cats with unilateral SC lesions showed a preferential loss of multisensory orientation behaviors for stimuli contralateral to the lesion. Surprisingly, this behavioral loss was seen even under circumstances where the SC lesion was far from complete.
View Article and Find Full Text PDFAlthough there are many perceptual theories that posit particular maturational profiles in higher-order (i.e., cortical) multisensory regions, our knowledge of multisensory development is primarily derived from studies of a midbrain structure, the superior colliculus.
View Article and Find Full Text PDFA growing number of brain imaging studies are being undertaken in order to better understand the contributions of multisensory processes to human behavior and perception. Many of these studies are designed on the basis of the physiological findings from single neurons in animal models, which have shown that multisensory neurons have the capacity for integrating their different sensory inputs and give rise to a product that differs significantly from either of the unisensory responses. At certain points these multisensory interactions can be superadditive, resulting in a neural response that exceeds the sum of the unisensory responses.
View Article and Find Full Text PDFMany neurons in the superior colliculus (SC) integrate sensory information from multiple modalities, giving rise to significant response enhancements. Although enhanced multisensory responses have been shown to depend on the spatial and temporal relationships of the stimuli as well as on their relative effectiveness, these factors alone do not appear sufficient to account for the substantial heterogeneity in the magnitude of the multisensory products that have been observed. Toward this end, the present experiments have revealed that there are substantial differences in the operations used by different multisensory SC neurons to integrate their cross-modal inputs, suggesting that intrinsic differences in these neurons may also play an important deterministic role in multisensory integration.
View Article and Find Full Text PDFMultisensory neurons and their ability to integrate multisensory cues develop gradually in the midbrain [i.e., superior colliculus (SC)].
View Article and Find Full Text PDFMultisensory neurons in the superior colliculus (SC) typically respond to combinations of stimuli from multiple modalities with enhancements and/or depressions in their activity. Although such changes in response have been shown to follow a predictive set of integrative principles, these principles fail to completely account for the full range of interactions seen throughout the SC population. In an effort to better define this variability, we sought to determine if there were additional features of the neuronal response profile that were predictive of the magnitude of the multisensory interaction.
View Article and Find Full Text PDF