With an increasing number of Biopharmaceutical Classification System (BCS) II/IV pipeline compounds, solubilizing and supersaturating formulation strategies are becoming prevalent. Beyond formulation and solid form strategies, prodrugs are also employed to overcome solubility-limited absorption of poorly water-soluble compounds. Prodrugs can potentially yield supersaturated systems upon conversion to the parent drug intraluminally and thus enhance absorption.
View Article and Find Full Text PDFInhibition of the receptor tyrosine kinase MerTK by small molecules has the potential to augment the immune response to tumors. Potent, selective inhibitors with high levels of target engagement are needed to fully evaluate the potential use of MerTK inhibitors as cancer therapeutics. We report the discovery and optimization of a series of pyrazinamide-based type 1.
View Article and Find Full Text PDFTAM receptor tyrosine kinases have emerged as promising therapeutic targets for cancer treatment due to their roles in both tumor intrinsic survival mechanisms and suppression of antitumor immunity within the tumor microenvironment. Inhibiting MerTK and Axl selectively is believed to hinder cancer cell survival, reverse the protumor myeloid phenotype, and suppress efferocytosis, thereby eliciting an antitumor immune response. In this study, we present the discovery of , a highly potent and selective dual MerTK/Axl inhibitor, achieved through a structure-based medicinal chemistry campaign.
View Article and Find Full Text PDFCyclin-dependent kinase 9 (CDK9) is a serine/threonine kinase involved in the regulation of transcription elongation. An inhibition of CDK9 downregulates a number of short-lived proteins responsible for tumor maintenance and survival, including the antiapoptotic BCL-2 family member MCL-1. As pan-CDK inhibitors under development have faced dosing and toxicity challenges in the clinical setting, we generated selective CDK9 inhibitors that could be amenable to an oral administration.
View Article and Find Full Text PDFMCL-1 is one of the most frequently amplified genes in cancer, facilitating tumor initiation and maintenance and enabling resistance to anti-tumorigenic agents including the BCL-2 selective inhibitor venetoclax. The expression of MCL-1 is maintained via P-TEFb-mediated transcription, where the kinase CDK9 is a critical component. Consequently, we developed a series of potent small-molecule inhibitors of CDK9, exemplified by the orally active A-1592668, with CDK selectivity profiles that are distinct from related molecules that have been extensively studied clinically.
View Article and Find Full Text PDFIn continuation of our previous research towards the discovery of potent, selective and drug-like Wee1 inhibitors, 2 novel series of biaryl heterocycles were designed, synthesized and evaluated. The new biaryl cores were designed to enable structure-activity exploration of substituents at C-8 or N-8 which were used for tuning compound properties and to improve compound profiles. The lead molecule 33 demonstrated a desirable pharmacokinetic profile and potentiated the anti-proliferative activity of irinotecan in vivo when dosed orally in the human breast MX-1 xenograft model.
View Article and Find Full Text PDFAided by molecular modeling, compounds with a pyrimidine-based tricyclic scaffold were designed and confirmed to inhibit Wee1 kinase. Structure-activity studies identified key pharmacophores at the aminoaryl and halo-benzene regions responsible for binding affinity with sub-nM K i values. The potent inhibitors demonstrated sub-μM activities in both functional and mechanism-based cellular assays and also possessed desirable pharmacokinetic profiles.
View Article and Find Full Text PDFTo investigate the role played by the unique pre-DFG residue Val 195 of Cdc7 kinase on the potency of azaindole-chloropyridines (1), a series of novel analogues with various chloro replacements were synthesized and evaluated for their inhibitory activity against Cdc7. X-ray cocrystallization using a surrogate protein, GSK3β, and modeling studies confirmed the azaindole motif as the hinge binder. Weaker hydrophobic interactions with Met 134 and Val 195 by certain chloro replacements (e.
View Article and Find Full Text PDFA high throughput screening (HTS) hit, 1 (Plk1 K(i)=2.2 μM) was optimized and evaluated for the enzymatic inhibition of Plk-1 kinase. Molecular modeling suggested the importance of adding a hydrophobic aromatic amine side chain in order to improve the potency by a classic kinase H-donor-acceptor binding mode.
View Article and Find Full Text PDFJ Peripher Nerv Syst
September 2012
Chemotherapy-induced peripheral neuropathy (CIPN) is a major toxicity of chemotherapy treatment for which no therapy is approved. Poly(ADP-ribose) polymerase (PARP)1/2 are nuclear enzymes activated upon DNA damage, and PARP1/2 inhibition provides resistance against DNA damage. A role for PARP inhibition in sensory neurotransmission has also been established.
View Article and Find Full Text PDFPARP-1, the most abundant member of the PARP superfamily of nuclear enzymes, has emerged as a promising molecular target in the past decade particularly for the treatment of cancer. A number of PARP-1 inhibitors, including veliparab discovered at Abbott, have advanced into different stages of clinical trials. Herein we describe the development of a new tetrahydropyridopyridazinone series of PARP-1 inhibitors.
View Article and Find Full Text PDFWe have investigated the SAR of a series of pyrimidinone-containing Cdc7 kinase inhibitors. A wide range of amine substitutions give potent compounds with activities (K(i)) less than 1nM. Kinase selectivity is reasonable and cytotoxicity corresponds to inhibition of MCM2 phosphorylation.
View Article and Find Full Text PDFPurpose: PARP inhibitors are being developed as therapeutic agents for cancer. More than six compounds have entered clinical trials. The majority of these compounds are β-nicotinamide adenine dinucleotide (NAD(+))-competitive inhibitors.
View Article and Find Full Text PDFCurr Opin Drug Discov Devel
September 2010
PARP-1 inhibitors have emerged as a promising therapeutic class of compounds, and numerous PARP inhibitors, including iniparib (BiPar Sciences Inc/sanofi-aventis), olaparib (AstraZeneca plc), veliparib (Abbott Laboratories), PF-1367338 (Pfizer Inc), MK-4827 (Merck & Co Inc) and CEP-9722 (Cephalon Inc), have advanced into clinical trials. Several additional inhibitors are expected to enter clinical trials within the next year. Early investigations with PARP-1 inhibitors involved non-oncological indications, but development has since progressed to focus primarily on oncology, for use both as single chemotherapeutic agents in specific patient populations (eg, BRCA-deficient) and as combination therapies with various chemotherapeutics.
View Article and Find Full Text PDFWe have developed a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase (PARP) inhibitors with excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (22b, A-966492). Compound 22b displayed excellent potency against the PARP-1 enzyme with a K(i) of 1 nM and an EC(50) of 1 nM in a whole cell assay.
View Article and Find Full Text PDFThrough conformational restriction of a benzamide by formation of a seven-membered hydrogen-bond with an oxindole carbonyl group, a series of PARP inhibitors was designed for appropriate orientation for binding to the PARP surface. This series of compounds with a 3-oxoisoindoline-4-carboxamide core structure, displayed modest to good activity against PARP-1 in both intrinsic and cellular assays. SAR studies at the lactam nitrogen of the pharmacophore have suggested that a secondary or tertiary amine is important for cellular potency.
View Article and Find Full Text PDFPurpose: ABT-888, currently in phase 2 trials, is a potent oral poly(ADP-ribose) polymerase inhibitor that enhances the activity of multiple DNA-damaging agents, including temozolomide (TMZ). We investigated ABT-888+TMZ combination therapy in multiple xenograft models representing various human tumors having different responses to TMZ.
Experimental Design: ABT-888+TMZ efficacy in xenograft tumors implanted in subcutaneous, orthotopic, and metastatic sites was assessed by tumor burden, expression of poly(ADP-ribose) polymer, and O(6)-methylguanine methyltransferase (MGMT).
Small molecule inhibitors of PARP-1 have been pursued by various organizations as potential therapeutic agents either capable of sensitizing cytotoxic treatments or acting as stand-alone agents to combat cancer. As one of the strategies to expand our portfolio of PARP-1 inhibitors, we pursued unsaturated heterocycles to replace the saturated cyclic amine derivatives appended to the benzimidazole core. Not only did a variety of these new generation compounds maintain high enzymatic potency, many of them also displayed robust cellular activity.
View Article and Find Full Text PDFPim-1, Pim-2, and Pim-3 are a family of serine/threonine kinases which have been found to be overexpressed in a variety of hematopoietic malignancies and solid tumors. Benzothienopyrimidinones were discovered as a novel class of Pim inhibitors that potently inhibit all three Pim kinases with subnanomolar to low single-digit nanomolar K(i) values and exhibit excellent selectivity against a panel of diverse kinases. Protein crystal structures of the bound Pim-1 complexes of benzothienopyrimidinones 3b (PDB code 3JYA), 6e (PDB code 3JYO), and 12b (PDB code 3JXW) were determined and used to guide SAR studies.
View Article and Find Full Text PDFMany established cancer therapies involve DNA-damaging chemotherapy or radiotherapy. Gain of DNA repair capacity of the tumor represents a common mechanism used by cancer cells to survive DNA-damaging therapy. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that is activated by DNA damage and plays a critical role in base excision repair.
View Article and Find Full Text PDFBased on screening hit 1, a series of tricyclic quinoxalinones have been designed and evaluated for inhibition of PARP-1. Substitutions at the 7- and 8-positions of the quinoxalinone ring led to a number of compounds with good enzymatic and cellular potency. The tricyclic quinoxalinone class is sensitive to modifications of both the amine substituent and the tricyclic core.
View Article and Find Full Text PDFWe have developed a series of cyclic amine-containing benzimidazole carboxamide PARP inhibitors with a methyl-substituted quaternary center at the point of attachment to the benzimidazole ring system. These compounds exhibit excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of 3a (2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide, ABT-888), currently in human phase I clinical trials.
View Article and Find Full Text PDFABT-888 is a potent, orally bioavailable PARP-1/2 inhibitor shown to potentiate DNA damaging agents. The ability to potentiate temozolomide (TMZ) and develop a biological marker for PARP inhibition was evaluated in vivo. Doses/schedules that achieve TMZ potentiation in the B16F10 syngeneic melanoma model were utilized to develop an ELISA to detect a pharmacodynamic marker, ADP ribose polymers (pADPr), after ABT 888 treatment.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase (PARP) senses DNA breaks and facilitates DNA repair via the polyADP-ribosylation of various DNA binding and repair proteins. We explored the mechanism of potentiation of temozolomide cytotoxicity by the PARP inhibitor ABT-888. We showed that cells treated with temozolomide need to be exposed to ABT-888 for at least 17 to 24 hours to achieve maximal cytotoxicity.
View Article and Find Full Text PDF