The recent COVID-19 outbreak has motivated an extensive development of non-pharmaceutical intervention policies for epidemics containment. While a total lockdown is a viable solution, interesting policies are those allowing some degree of normal functioning of the society, as this allows a continued, albeit reduced, economic activity and lessens the many societal problems associated with a prolonged lockdown. Recent studies have provided evidence that fast periodic alternation of lockdown and normal-functioning days may effectively lead to a good trade-off between outbreak abatement and economic activity.
View Article and Find Full Text PDFCOVID-19 abatement strategies have risks and uncertainties which could lead to repeating waves of infection. We show-as proof of concept grounded on rigorous mathematical evidence-that periodic, high-frequency alternation of into, and out-of, lockdown effectively mitigates second-wave effects, while allowing continued, albeit reduced, economic activity. Periodicity confers (i) predictability, which is essential for economic sustainability, and (ii) robustness, since lockdown periods are not activated by uncertain measurements over short time scales.
View Article and Find Full Text PDFTesting, tracking and tracing abilities have been identified as pivotal in helping countries to safely reopen activities after the first wave of the COVID-19 virus. Contact tracing apps give the unprecedented possibility to reconstruct graphs of daily contacts, so the question is: who should be tested? As human contact networks are known to exhibit community structure, in this paper we show that the Kemeny constant of a graph can be used to identify and analyze bridges between communities in a graph. Our 'Kemeny indicator' is the value of the Kemeny constant in the new graph that is obtained when a node is removed from the original graph.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
February 2020
This paper focuses on developing a distributed leader-following fault-tolerant tracking control scheme for a class of high-order nonlinear uncertain multiagent systems. Neural network-based adaptive learning algorithms are developed to learn unknown fault functions, guaranteeing the system stability and cooperative tracking even in the presence of multiple simultaneous process and actuator faults in the distributed agents. The time-varying leader's command is only communicated to a small portion of follower agents through directed links, and each follower agent exchanges local measurement information only with its neighbors through a bidirectional but asymmetric topology.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
April 2017
This paper develops an integrated filtering and adaptive approximation-based approach for fault diagnosis of process and sensor faults in a class of continuous-time nonlinear systems with modeling uncertainties and measurement noise. The proposed approach integrates learning with filtering techniques to derive tight detection thresholds, which is accomplished in two ways: 1) by learning the modeling uncertainty through adaptive approximation methods and 2) by using filtering for dampening measurement noise. Upon the detection of a fault, two estimation models, one for process and the other for sensor faults, are initiated in order to identify the type of fault.
View Article and Find Full Text PDFIEEE Trans Neural Netw
July 2007
In this paper, we consider the problem of actively providing an estimate of the state of a stochastic dynamic system over a (possibly long) finite time horizon. The active estimation problem (AEP) is formulated as a stochastic optimal control one, in which the minimization of a suitable uncertainty measure is carried out. Toward this end, the use of the Renyi entropy as an information measure is proposed and motivated.
View Article and Find Full Text PDFIn this paper, the problem of fault detection in mechanical systems performing linear motion, under the action of friction phenomena is addressed. The friction effects are modeled through the dynamic LuGre model. The proposed architecture is built upon an online neural network (NN) approximator, which requires only system's position and velocity.
View Article and Find Full Text PDF