Nature realizes protein and peptide depots by catalyzing covalent bonds with the extracellular matrix (ECM) of tissues. We are translating this natural blueprint for the sustained delivery of a myostatin-inhibiting peptide (Anti-Myo), resulting in an enzyme depot established from injectable solutions. For that, we fused Anti-Myo to the D-domain of insulin-like growth factor I, a transglutaminase (TG) substrate.
View Article and Find Full Text PDFBone resorption is highly dependent on the dynamic rearrangement of the osteoclast actin cytoskeleton to allow formation of actin rings and a functional ruffled border. Hem1 is a hematopoietic-specific subunit of the WAVE-complex which regulates actin polymerization and is crucial for lamellipodia formation in hematopoietic cell types. However, its role in osteoclast differentiation and function is still unknown.
View Article and Find Full Text PDFObjective: Loose bodies are free-floating tissues of cartilage and bone that can cause pain, swelling, the inability to straighten the knee, or intermittent locking of the knee. Loose bodies can arise from degenerative joint disease, flake fractures, osteochondritis dissecans, or chondromatosis. We hypothesized that loose bodies can be classified in stages with tissue characteristics similar to endochondral ossification.
View Article and Find Full Text PDFWe showed that the chemokine receptor C-X-C Motif Chemokine Receptor 2 (CXCR2) is essential for cartilage homeostasis. Here, we reveal that the CXCR2 ligand granulocyte chemotactic protein 2 (GCP-2) was expressed, during embryonic development, within the prospective permanent articular cartilage, but not in the epiphyseal cartilage destined to be replaced by bone. GCP-2 expression was retained in adult articular cartilage.
View Article and Find Full Text PDFFibroblast-like synoviocytes or synovial fibroblasts (FLS) are important cellular components of the inner layer of the joint capsule, referred to as the synovial membrane. They can be found in both layers of this synovial membrane and contribute to normal joint function by producing extracellular matrix components and lubricants. However, under inflammatory conditions like in rheumatoid arthritis (RA), they may start to proliferate, undergo phenotypical changes and become central elements in the perpetuation of inflammation through their direct and indirect destructive functions.
View Article and Find Full Text PDFObjective: The aim of this study was to assess the extent and the mechanism by which activin A contributes to progressive joint destruction in experimental arthritis and which activin A-expressing cell type is important for disease progression.
Methods: Levels of activin A in synovial tissues were evaluated by immunohistochemistry, cell-specific expression and secretion by PCR and ELISA, respectively. Osteoclast (OC) formation was assessed by tartrat-resistant acid phosphatase (TRAP) staining and activity by resorption assay.
Osteoarthritis (OA) is characterized by cartilage degradation that is induced by inflammation. Sterile inflammation can be caused by damage-associated molecular patterns that are released by chondrocytes and activate pattern recognition receptors. We evaluate the role of toll-like receptor-3-activating RNA in the pathogenesis of OA.
View Article and Find Full Text PDFObjectives: TNF-induced activation of fibroblast-like synoviocytes (FLS) is a critical determinant for synovial inflammation and joint destruction in RA. The detrimental role of TNF-receptor 1 (TNFR1) has thoroughly been characterized. The contributions of TNFR2, however, are largely unknown.
View Article and Find Full Text PDFIt remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca) is the most important second messenger, for which the potassium channel K18.1 is a relevant regulator.
View Article and Find Full Text PDFThe interactions of fibroblast-like synoviocyte (FLS)-derived pro-inflammatory cytokines/chemokines and immune cells support the recruitment and activation of inflammatory cells in RA. Here, we show for the first time that the classical myokine myostatin (GDF-8) is involved in the recruitment of Th17 cells to inflammatory sites thereby regulating joint inflammation in a mouse model of TNFalpha-mediated chronic arthritis. Mechanistically, myostatin-deficiency leads to decreased levels of the chemokine CCL20 which is associated with less infiltration of Th17 cells into the inflamed joints.
View Article and Find Full Text PDFBackground: To investigate the effects of inhibiting histone deacetylase (HDAC) 6 on inflammatory responses and tissue-destructive functions of fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA).
Methods: FLS from RA patients were activated with interleukin (IL)-1β in the presence of increasing concentrations of M808, a novel specific HDAC6 inhibitor. Production of ILs, chemokines, and metalloproteinases (MMPs) was measured in ELISAs.
Agonists and antagonists of the canonical Wnt signaling pathway are modulators of pathological aspects of rheumatoid arthritis (RA). Their activity is primarily modifying bone loss and bone formation, as shown in animal models of RA. More recently, modulation of Wnt signaling by the antagonist Sclerostin has also been shown to influence soft-tissue-associated inflammatory aspects of the disease pointing towards a role of Wnt signaling in soft-tissue inflammation as well.
View Article and Find Full Text PDFBasic calcium phosphate (BCP)-based calcification of cartilage is a common finding during osteoarthritis (OA) and is directly linked to the severity of the disease and hypertrophic differentiation of chondrocytes. Chondrocalcinosis (CC) is associated with calcium pyrophosphate dihydrate (CPPD) deposition disease in the joint inducing OA-like symptoms. There is only little knowledge about the effect of CPPD crystals on chondrocytes and the signaling pathways involved in their generation.
View Article and Find Full Text PDFObjectives: Osteophytes are highly prevalent in osteoarthritis (OA) and are associated with pain and functional disability. These pathological outgrowths of cartilage and bone typically form at the junction of articular cartilage, periosteum and synovium. The aim of this study was to identify the cells forming osteophytes in OA.
View Article and Find Full Text PDFNecroptotic cell death is characterized by an activation of RIPK3 and MLKL that leads to plasma membrane permeabilization and the release of immunostimulatory cellular contents. High levels of chondrocyte death occur following intra-articular trauma, which frequently leads to post-traumatic osteoarthritis development. The aim of this study is to assess necroptosis levels in cartilage post-trauma and to examine whether chondrocyte necroptotic mechanisms may be investigated and modified in vitro.
View Article and Find Full Text PDFBackground: Animal models are one of the first steps in translation of basic science findings to clinical practice. For tendon healing research, transgenic mouse models are important to advance therapeutic strategies. However, the small size of the structures complicates surgical approaches, histological assessment, and biomechanical testing.
View Article and Find Full Text PDFObjective: Calcification of cartilage with basic calcium phosphate (BCP) crystals is a common phenomenon during osteoarthritis (OA). It is directly linked to the severity of the disease and known to be associated to hypertrophic differentiation of chondrocytes. One morphogen regulating hypertrophic chondrocyte differentiation is Wnt3a.
View Article and Find Full Text PDFEnhanced osteoclast formation and function is a fundamental cause of alterations to bone structure and plays an important role in several diseases impairing bone quality. Recent work revealed that TRP calcium channels 3 and 6 might play a special role in this context. By analyzing the bone phenotype of TRPC6-deficient mice we detected a regulatory effect of TRPC3 on osteoclast function.
View Article and Find Full Text PDFCRISPR-Cas9-mediated homology-directed DNA repair is the method of choice for precise gene editing in a wide range of model organisms, including mouse and human. Broad use by the biomedical community refined the method, making it more efficient and sequence specific. Nevertheless, the rapidly evolving technique still contains pitfalls.
View Article and Find Full Text PDFObjective: Syndecan-4 (sdc4) is a cell-anchored proteoglycan that consists of a transmembrane core protein and glucosaminoglycan (GAG) side chains. Binding of soluble factors to the GAG chains of sdc4 may result in the dimerisation of sdc4 and the initiation of downstream signalling cascades. However, the question of how sdc4 dimerisation and signalling affects the response of cells to inflammatory stimuli is unknown.
View Article and Find Full Text PDFSynovial joints are unique functional elements of the body and provide the ability for locomotion and for physical interaction with the environment. They are composed of different connective tissue structures, of which the synovial membrane is one central component. It shows a number of peculiarities that makes it different from other membranes in our body, while several lines of evidence suggest that synovial fibroblasts, also termed fibroblast-like synoviocytes (FLS) critically contribute to these peculiarities.
View Article and Find Full Text PDFWe present the software Condition-specific Regulatory Units Prediction (CRUP) to infer from epigenetic marks a list of regulatory units consisting of dynamically changing enhancers with their target genes. The workflow consists of a novel pre-trained enhancer predictor that can be reliably applied across cell types and species, solely based on histone modification ChIP-seq data. Enhancers are subsequently assigned to different conditions and correlated with gene expression to derive regulatory units.
View Article and Find Full Text PDFObjective: Syndecan-4 plays a critical role in cartilage degradation during osteoarthritis (OA). The aim of this study was to investigate the expression and localization of syndecan-4 in different OA joint tissues.
Design: Syndecan-4 mRNA levels were quantified by reverse transcription-polymerase chain reaction in human OA primary cells.