Publications by authors named "Thomas P Richardson"

Multipotent cell types are rapidly becoming key components in a variety of tissue engineering schemes, and mesenchymal stem cells (MSCs) are emerging as an important tool in bone tissue regeneration. Although several soluble signals influencing osteogenic differentiation of MSCs in vitro are well-characterized, relatively little is known about the influence of substrate signals. This study was aimed at elucidating the effects of a bone-like mineral (BLM), which is vital in the process of bone bonding to orthopedic implant materials, on the osteogenic differentiation of human MSCs in vitro.

View Article and Find Full Text PDF

A developing therapy for complete or partial loss of function in various tissues and organs involves transplanting an appropriate cell population, capable of compensating for the existing deficiencies. Clinical application of this type of strategy is currently limited by the death or dedifferentiation of the transplanted cells after delivery to the recipient. A delay in thorough vascularization of the implant area creates an environment low in oxygen and other nutrients, and likely contributes to the initial death of transplanted cells.

View Article and Find Full Text PDF

The reduction of adipose depots is widely considered to be the optimal approach to limit pathologies associated with obesity. While many current antiobesity strategies are centered on regulating satiety, these approaches typically attempt an overall weight loss and are unable to target distinct adipose depots specifically associated with disease risk. The authors report a novel therapeutic modality utilizing localized and sustained delivery of drugs to provide for the selective ablation of adipose tissue.

View Article and Find Full Text PDF

Understanding the process of wound healing will provide valuable insight for the development of new strategies to treat diseases associated with improper regeneration, such as blindness induced by corneal scarring. Heparan sulfate proteoglycans (HSPG) are not normally expressed in the corneal stroma, but their presence at sites of injury suggests their involvement in the wound healing response. Primary cultured corneal stromal fibroblasts constitutively express HSPG and represent an injured phenotype.

View Article and Find Full Text PDF