Publications by authors named "Thomas P Pearl"

A fundamental understanding of chemical interactions and transport mechanisms that result from introducing multiple chemical species into a polymer plays a key role in the development and optimization of membranes, coatings, and decontamination formulations. In this study, we explore the solvent-assisted desorption of a penetrant (2,5-lutidine) in polyurethane with aprotic (acetonitrile) and protic (methanol) solvents. Chemical interactions between solvent, penetrant, and polymer functional groups are characterized via time-resolved Fourier transform infrared spectroscopy (FTIR) during single and multicomponent exposures.

View Article and Find Full Text PDF

The ability to directly characterize chemical transport and interactions that occur within a material (i.e., subsurface dynamics) is a vital component in understanding contaminant mass transport and the ability to decontaminate materials.

View Article and Find Full Text PDF

Chemical warfare agents (CWA) can be absorbed by variety of materials including polymeric coatings like paints through bulk liquid contact, thus presenting touch and vapor hazards to interacting personnel. In order for accurate hazard assessments and subsequent decontamination approaches to be designed, it is necessary to characterize the absorption and distribution of highly toxic species, as well as their chemical simulant analogs, in the subsurface of engineered, heterogeneous materials. Using a combination of judicious sample preparation in concert with scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), it should be possible to directly measure the uptake and distribution of CWA simulants in the subsurface of complex multilayer coatings.

View Article and Find Full Text PDF

Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide.

View Article and Find Full Text PDF

The binding configuration of propylene glycol stereoisomer molecules adsorbed on the Si(001)-2×1 surface was investigated using a combination of scanning tunneling microscopy (STM) and density functional theory calculations. Propylene glycol was found to adsorb dissociatively via two hydroxyl groups exclusively as a bridge between the ends of two adjacent dimers along the dimer row. The chirality was preserved during bonding to Si atoms and was identifiable with STM imaging.

View Article and Find Full Text PDF

Low temperature scanning tunneling microscopy and spectroscopy have been used to resolve modifications to the Ag(111) surface electronic structure due to the weak adsorption of the nucleobase adenine. Differential conductance spectroscopy recorded at 15 K reveals an upward energetic shift of the surface state native to Ag(111) from a band edge of -67 meV on the clean surface to +82.5 meV recorded over adenine islands.

View Article and Find Full Text PDF

The development of DNA-based biosensors requires a deep understanding of how DNA molecules adsorb and organize on solid state surfaces as well as the electronic properties of individual and aggregates of DNA molecules. Using scanning tunneling microscopy (STM) and atomic force microscopy (AFM), we have successfully characterized an attractive force driven molecular void formation for DNA chemically adsorbed on Au(111) as a function of strand length and deposition conditions. Here we report the observation of these void structures formed on the Au(111) surface by adsorption of both 45 and 90 base pair long, thiolated double-stranded DNA.

View Article and Find Full Text PDF

We report diffusion in the tunneling spectra of isolated, ligand-stabilized undecagold (Au11) clusters immobilized by attachment to alpha,omega-alkanedithiolate tethers inserted into alkanethiolate self-assembled monolayers. We use scanning tunneling microscopy and spectroscopy at cryogenic (UHV, 4 K) conditions to measure these clusters' conductance with complete control of their chemical and physical environment; additionally, thermal broadening of their electronic states as well as their mobility is minimized. At low temperature, the Au11 clusters demonstrate Coulomb blockade behavior, with zero-conductance gaps resulting from quantum size effects.

View Article and Find Full Text PDF