Publications by authors named "Thomas P Kohler"

Article Synopsis
  • The bacteria called (the name is missing) causes a common kind of lung infection known as pneumonia around the world.
  • Researchers found that this bacteria can break down important proteins in the lung that help keep it strong and healthy.
  • They discovered that when the bacteria changes the acid levels in the lungs, it makes things worse, but if they keep the acid levels normal, it helps protect the lungs and immune system during the infection.
View Article and Find Full Text PDF

Background:  Platelets prevent extravasation of capillary fluids into the pulmonary interstitial tissue by sealing gaps in inflamed endothelium. This reduces respiratory distress associated with pneumonia. is the leading cause of severe community-acquired pneumonia.

View Article and Find Full Text PDF

Introduction: The hydrophilic, polymeric chain of the lipoteichoic acid (LTA) of the Gram-positive pathobiont Streptococcus pneumoniae is covalently linked to the glycosylglycerolipid α-d-glucopyranosyl-(1,3)-diacylglycerol by the LTA ligase TacL, leading to its fixation in the cytoplasmic membrane. Pneumococcal LTA, sharing identical repeating units with the wall teichoic acids (WTA), is dispensable for normal growth but required for full virulence in invasive infections.

Methods: Mutants deficient in TacL and complemented strains constructed were tested for their growth, resistance against oxidative stress, and susceptibility against antimicrobial peptides.

View Article and Find Full Text PDF

ATP-binding cassette (ABC) transport systems are crucial for bacteria to ensure sufficient uptake of nutrients that are not produced de novo or improve the energy balance. The cell surface of the pathobiont Streptococcus pneumoniae (pneumococcus) is decorated with a substantial array of ABC transporters, critically influencing nasopharyngeal colonization and invasive infections. Given the auxotrophic nature of pneumococci for certain amino acids, the Ami ABC transporter system, orchestrating oligopeptide uptake, becomes indispensable in host compartments lacking amino acids.

View Article and Find Full Text PDF

Bacterial meningitis, frequently caused by (pneumococcus), represents a substantial global health threat leading to long-term neurological disorders. This study focused on the cholesterol-binding toxin pneumolysin (PLY) released by pneumococci, specifically examining clinical isolates from patients with meningitis and comparing them to the PLY-reference strain D39. Clinical isolates exhibit enhanced PLY release, likely due to a significantly higher expression of the autolysin LytA.

View Article and Find Full Text PDF

Introduction: Streptococcus pneumoniae is the most common cause of bacterial meningitis and meningoencephalitis in humans. The bacterium produces numerous virulence determinants, among them hydrogen peroxide (H2O2) and pneumolysin (Ply), which contribute to bacterial cytotoxicity. Microglia, the resident phagocytes in the brain, are distinct from other macrophages, and we thus compared their susceptibility to pneumococcal toxicity and their ability to phagocytose pneumococci with those of bone marrow-derived macrophages (BMDM).

View Article and Find Full Text PDF

The prevalence of multidrug-resistant is of global concern, and vaccines are urgently needed. The iron-regulated surface determinant protein B (IsdB) of was investigated as a vaccine candidate because of its essential role in bacterial iron acquisition but failed in clinical trials despite strong immunogenicity. Here, we reveal an unexpected second function for IsdB in pathogen-host interaction: the bacterial fitness factor IsdB triggers a strong inflammatory response in innate immune cells via Toll-like receptor 4 and the inflammasome, thus acting as a novel pathogen-associated molecular pattern of .

View Article and Find Full Text PDF

is a zoonotic agent that causes severe invasive diseases in domestic animals and humans, but little is known about its pathogenesis and virulence mechanisms so far. SCM, the M-like protein expressed by , is considered one of the major virulence determinants. Here, we report on the two distinct groups of SCM.

View Article and Find Full Text PDF

Systemic infections with pathogenic or facultative pathogenic bacteria are associated with activation and aggregation of platelets leading to thrombocytopenia and activation of the clotting system. Bacterial proteins leading to platelet activation and aggregation have been identified, and while platelet receptors are recognized, induced signal transduction cascades are still often unknown. In addition to proteinaceous adhesins, pathogenic bacteria such as and also produce toxins such as pneumolysin and alpha-hemolysin.

View Article and Find Full Text PDF

Background: Toxins are key virulence determinants of pathogens and can impair the function of host immune cells, including platelets. Insights into pathogen toxin interference with platelets will be pivotal to improve treatment of patients with bacterial bloodstream infections.

Materials And Methods: In this study, we deciphered the effects of Staphylococcus aureus toxins α-hemolysin, LukAB, LukDE, and LukSF on human platelets and compared the effects with the pore forming toxin pneumolysin of Streptococcus pneumoniae.

View Article and Find Full Text PDF

The pathobiont causes life-threatening diseases, including pneumonia, sepsis, meningitis, or non-invasive infections such as otitis media. Serine proteases are enzymes that have been emerged during evolution as one of the most abundant and functionally diverse group of proteins in eukaryotic and prokaryotic organisms. expresses up to four extracellular serine proteases belonging to the category of trypsin-like or subtilisin-like family proteins: HtrA, SFP, PrtA, and CbpG.

View Article and Find Full Text PDF

Seasonal Influenza A virus (IAV) infections can promote dissemination of upper respiratory tract commensals such as Streptococcus pneumoniae to the lower respiratory tract resulting in severe life-threatening pneumonia. Here, we aimed to compare innate immune responses in the lungs of healthy colonized and non-colonized mice after IAV challenge at the initial asymptomatic stage of infection. Responses during a severe bacterial pneumonia were profiled for comparison.

View Article and Find Full Text PDF

The two-component regulatory system 09 of has been shown to modulate resistance against oxidative stress as well as capsule expression. These data and the implication of TCS09 in cell wall integrity have been shown for serotype 2 strain D39. Other data have suggested strain-specific regulatory effects of TCS09.

View Article and Find Full Text PDF

has evolved versatile strategies to colonize the nasopharynx of humans. Colonization is facilitated by direct interactions with host cell receptors or binding to components of the extracellular matrix. In addition, pneumococci hijack host-derived extracellular proteases such as the serine protease plasmin(ogen) for ECM and mucus degradation as well as colonization.

View Article and Find Full Text PDF

Community-acquired pneumonia by primary or superinfections with Streptococcus pneumoniae can lead to acute respiratory distress requiring mechanical ventilation. The pore-forming toxin pneumolysin alters the alveolar-capillary barrier and causes extravasation of protein-rich fluid into the interstitial pulmonary tissue, which impairs gas exchange. Platelets usually prevent endothelial leakage in inflamed pulmonary tissue by sealing inflammation-induced endothelial gaps.

View Article and Find Full Text PDF

Nucleotides are important for RNA and DNA synthesis and, despite a de novo synthesis by bacteria, uptake systems are crucial. Streptococcus pneumoniae, a facultative human pathogen, produces a surface-exposed nucleoside-binding protein, PnrA, as part of an ABC transporter system. Here we demonstrate the binding affinity of PnrA to nucleosides adenosine, guanosine, cytidine, thymidine and uridine by microscale thermophoresis and indicate the consumption of adenosine and guanosine by H NMR spectroscopy.

View Article and Find Full Text PDF

Background: Heparin induced thrombocytopenia (HIT) is likely a misdirected bacterial host defense mechanism. Platelet factor 4 (PF4) binds to polyanions on bacterial surfaces exposing neo-epitopes to which HIT antibodies bind. Platelets are activated by the resulting immune complexes via FcγRIIA, release bactericidal substances, and kill Gram-negative Escherichia coli.

View Article and Find Full Text PDF

Secreted antimicrobial peptides (AMPs) are an important part of the human innate immune system and prevent local and systemic infections by inhibiting bacterial growth in a concentration-dependent manner. In the respiratory tract, the cationic peptide LL-37 is one of the most abundant AMPs and capable of building pore complexes in usually negatively charged bacterial membranes, leading to the destruction of bacteria. However, the adaptation mechanisms of several pathogens to LL-37 are already described and are known to weaken the antimicrobial effect of the AMP, for instance, by repulsion, export or degradation of the peptide.

View Article and Find Full Text PDF

is a major cause of community acquired pneumonia and septicaemia in humans. These diseases are frequently associated with thromboembolic cardiovascular complications. Pneumococci induce the exocytosis of endothelial Weibel-Palade Bodies and thereby actively stimulate the release of von Willebrand factor (VWF), which is an essential glycoprotein of the vascular hemostasis.

View Article and Find Full Text PDF

Streptococcus canis is a zoonotic agent that causes serious invasive diseases in domestic animals and humans, but knowledge about its pathogenic potential and underlying virulence mechanisms is limited. Here, we report on the ability of certain S. canis isolates to form large bacterial aggregates when grown in liquid broth.

View Article and Find Full Text PDF

A successful colonization of different compartments of the human host requires multifactorial contacts between bacterial surface proteins and host factors. Extracellular matrix proteins and matricellular proteins such as thrombospondin-1 play a pivotal role as adhesive substrates to ensure a strong interaction with pathobionts like the Gram-positive Streptococcus pneumoniae and Staphylococcus aureus. The human glycoprotein thrombospondin-1 is a component of the extracellular matrix and is highly abundant in the bloodstream during bacteremia.

View Article and Find Full Text PDF

is endowed with a variety of surface-exposed proteins representing putative vaccine candidates. Lipoproteins are covalently anchored to the cell membrane and highly conserved among pneumococcal serotypes. Here, we evaluated these lipoproteins for their immunogenicity and protective potential against pneumococcal colonisation.

View Article and Find Full Text PDF

The bacterial lung pathogen has a unique nutritional requirement for exogenous choline and attaches phosphorylcholine (-Cho) residues to the GalNAc moieties of its teichoic acids (TAs) in its cell wall. Two phosphorylcholine transferases, LicD1 and LicD2, mediate the attachment of -Cho to the O-6 positions of the two GalNAc residues present in each repeating unit of pneumococcal TAs (pnTAs), of which only LicD1 has been determined to be essential. At the molecular level, the specificity of the -Cho attachment to pnTAs by LicD1 and LicD2 remains still elusive.

View Article and Find Full Text PDF

can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic infection are gaining importance.

View Article and Find Full Text PDF

Teichoic acid (TA), a crucial cell wall constituent of the pathobiont Streptococcus pneumoniae, is bound to peptidoglycan (wall teichoic acid, WTA) or to membrane glycolipids (lipoteichoic acid, LTA). Both TA polymers share a common precursor synthesis pathway, but differ in the final transfer of the TA chain to either peptidoglycan or a glycolipid. Here, we show that LTA exhibits a different linkage conformation compared to WTA, and identify TacL (previously known as RafX) as a putative lipoteichoic acid ligase required for LTA assembly.

View Article and Find Full Text PDF