Background: "Active" heat acclimation (exercise-in-the-heat) can improve exercise performance but the efficacy of "passive" heat acclimation using post-exercise heat exposure is unclear. Therefore, we synthesised a systematic review and meta-analysis to answer whether post-exercise heat exposure improves exercise performance.
Methods: Five databases were searched to identify studies including: (i) healthy adults; (ii) an exercise training intervention with post-exercise heat exposure via sauna or hot water immersion (treatment group); (iii) a non-heat exposure control group completing the same training; and (iv) outcomes measuring exercise performance in the heat (primary outcome), or performance in thermoneutral conditions, V̇Omax, lactate threshold, economy, heart rate, RPE, core temperature, sweat rate, and thermal sensations.
Background: Fat loss mainly conveys the benefits of caloric restriction for people living with type 2 diabetes. The literature is equivocal regarding whether exercise facilitates fat loss during caloric restriction. This analysis aimed to assess the dose-response effects of exercise in combination with a caloric restriction on fat mass (FM) and FM percentage (FM %) in persons with diagnosed type 2 diabetes.
View Article and Find Full Text PDFInterval walking training (IWT) is a free-living training intervention involving alternating fast and slow walking cycles. IWT is efficacious in improving physical fitness and muscle strength, and reducing factors associated with lifestyle-related diseases. In individuals with type 2 diabetes, IWT improves glycemic control directly through enhanced glucose effectiveness, challenging conventional views on mechanisms behind training-induced improvements in glycemic control.
View Article and Find Full Text PDFThe benefits of exercise involve skeletal muscle redox state alterations of nicotinamide adenine dinucleotide (NAD) and flavin adenine dinucleotide (FAD). We determined the fiber-specific effects of acute exercise on the skeletal muscle redox state in healthy adults. Muscle biopsies were obtained from 19 participants (11 M, 8 F; 26 ± 4 yr) at baseline (fasted) and 30 min and 3 h after treadmill exercise at 80% maximal oxygen consumption (V̇o).
View Article and Find Full Text PDFDiet-induced weight loss is associated with improved beta-cell function in people with type 2 diabetes (T2D) with remaining secretory capacity. It is unknown if adding exercise to diet-induced weight loss improves beta-cell function and if exercise volume is important for improving beta-cell function in this context. Here, we carried out a four-armed randomized trial with a total of 82 persons (35% females, mean age (s.
View Article and Find Full Text PDFBackground: Fibroblast growth factor 21 (FGF21) treatment improves metabolic homeostasis in diverse species, including humans. Physiologically, plasma FGF21 levels increase modestly after glucose ingestion, but it is unclear whether this is mediated by glucose itself or due to a secondary effect of postprandial endocrine responses. A refined understanding of the mechanisms that control FGF21 release in humans may accelerate the development of small-molecule FGF21 secretagogues to treat metabolic disease.
View Article and Find Full Text PDFTrials
April 2021
Background: Lifestyle intervention, i.e. diet and physical activity, forms the basis for care of type 2 diabetes (T2D).
View Article and Find Full Text PDFBackground: Exercise improves glycemic control but the magnitude, and in some cases, the direction of this effect is variable. Ambient hyperglycemia has been implicated in this exercise response heterogeneity. The current study investigated whether pre-exercise hyperglycemia directly impacts the effect of exercise on glycemic control.
View Article and Find Full Text PDFAims/hypothesis: This study aimed to examine if beta-aminoisobutyric acid (BAIBA) is (i) secreted by skeletal muscle in humans during exercise, (ii) associated with insulin secretory function in vivo, and (iii) directly linked with acute glucose-mediated insulin release by pancreatic beta cells .
Methods: Following 2-weeks of single-leg immobilization, plasma BAIBA concentrations were measured in the brachial artery and the femoral veins of each leg in healthy male subjects, at rest and during two-legged dynamic knee-extensor exercise. During a 2-h hyperglycamic clamp, insulin secretory function and levels of plasma BAIBA were assessed in non-diabetic individuals, non-diabetic individuals following 24-h hyperglycemia and patients with type 2 diabetes.
New Findings: What is the topic of this review? This review discusses the evidence of the benefits of exercise training for β-cell health through improvements in function, proliferation and survival which may have implications in the treatment of diabetes. What advances does it highlight? This review highlights how exercise may modulate β-cell health in the context of diabetes and highlights the need for further exploration of whether β-cell preserving effects of exercise translates to T1D.
Abstract: Physical exercise is a core therapy for type 1 and type 2 diabetes.
The optimal timing between meal ingestion and simple physical activity for improving blood glucose control is unknown. This study compared the effects of physical activity on postprandial interstitial glucose responses when the activity was conducted either immediately before, immediately after, or 30 min after breakfast. Forty-eight adults were randomized to three separate physical activity interventions: standing still (for 30 min), walking (for 30 min), and bodyweight exercises (3 sets of 10 squats, 10 push-ups, 10 lunges, 10 sit-ups).
View Article and Find Full Text PDFObesity and type 2 diabetes (T2DM) are characterized by a blunted metabolic response to insulin, and strongly manifests in skeletal muscle insulin resistance. The orphan nuclear receptors, Nur77 and NOR1, regulate insulin-stimulated nutrient metabolism where Nur77 and NOR1 gene expression is increased with acute aerobic exercise and acute insulin stimulation. Whether Nur77 or NOR1 are associated with the insulin-sensitizing effects of chronic aerobic exercise training has yet to be elucidated.
View Article and Find Full Text PDFThe purpose of this investigation was to evaluate the effects of experimental hyperglycemia on oxidative damage (OX), advanced glycation end products (AGEs), and the receptor for AGEs (RAGE) through an in vivo approach. Obese subjects ( = 10; 31.2 ± 1.
View Article and Find Full Text PDFAims: Glucose effectiveness (GE) refers to the ability of glucose to influence its own metabolism through insulin-independent mechanisms. Diminished GE is a predictor of progression to type 2 diabetes. Exercise training improves GE, however, little is known about how dietary interventions, such as manipulating the glycemic index of diets, interact with exercise-induced improvements in GE in at-risk populations.
View Article and Find Full Text PDFAims/hypothesis: In this study, we aimed to examine real-time effects of molecules released by contracting skeletal muscle on the insulin secretory function of β-cells using a novel perifusion platform. We hypothesised that media conditioned by contracting skeletal muscle will influence insulin secretion and mitochondrial energy metabolism in β-cells under normal and type-2 diabetic conditions.
Methods: INS-1 832/3 pseudoislets were perifused with media from C2C12 myotubes treated with or without electrical pulse stimulation (EPS; 40 V, 1.
Exercise provides a cornerstone in the prevention and treatment of several chronic diseases. The use of in vivo exercise models alone cannot fully establish the skeletal muscle-specific mechanisms involved in such health-promoting effects. As such, models that replicate exercise-like effects in vitro provide useful tools to allow investigations that are not otherwise possible in vivo.
View Article and Find Full Text PDFPhysical inactivity and excessive postprandial hyperglycemia are two major independent risk factors for type 2 diabetes and cardiovascular-related mortality. Current health policy guidelines recommend at least 150 min of physical activity per week coupled with reduced daily sedentary behavior by interrupting prolonged sitting with bouts of light activity every 30-min. This evidence-based strategy promotes health and quality of life.
View Article and Find Full Text PDFIn the context of type 2 diabetes, inter-individual variability in the therapeutic response of blood glucose control to exercise exists to the extent that some individuals, occasionally referred to as "non-responders," may not experience therapeutic benefit to their blood glucose control. This narrative review examines the evidence and, more importantly, identifies the sources of such inter-individual variability. In doing so, this review highlights that no randomized controlled trial of exercise has yet prospectively measured inter-individual variability in blood glucose control in individuals with prediabetes or type 2 diabetes.
View Article and Find Full Text PDFExercise improves insulin secretion by pancreatic beta cells (β-cells) in patients with type 2 diabetes, but molecular mechanisms of this effect are yet to be determined. Given that contracting skeletal muscle causes a spike in circulating interleukin-6 (IL-6) levels during exercise, muscle-derived IL-6 is a possible endocrine signal associated with skeletal muscle to β-cell crosstalk. Evidence to support a role of IL-6 in regulating the health and function of β-cells is currently inconsistent and studies investigating the role of IL-6 on the function of β-cells exposed to type 2 diabetic-like conditions are limited and often confounded by supraphysiological IL-6 concentrations.
View Article and Find Full Text PDFPro-inflammatory cytokines cause pancreatic beta cell failure during the development of type 2 diabetes. This beta cell failure associates with mitochondrial dysfunction, but the precise effects of cytokines on mitochondrial respiration remain unclear. To test the hypothesis that pro-inflammatory cytokines impair glucose-stimulated insulin secretion (GSIS) by inhibiting oxidative ATP synthesis, we probed insulin release and real-time mitochondrial respiration in rat INS-1E insulinoma cells that were exposed to a combination of 2 ng/mL interleukin-1-beta and 50 ng/mL interferon-gamma.
View Article and Find Full Text PDFIn healthy subjects, it has been suggested that exercise may acutely suppress energy-intake and appetite, with peak intensity being an important determinant for this effect. In subjects with type 2 diabetes (T2D), the effect of exercise on appetite-related variables is, however, virtually unknown. We aimed to assess the effects of two exercise interventions, differing with regards to peak intensity, on energy-intake, satiety and appetite-related hormones in subjects with T2D.
View Article and Find Full Text PDFAims/hypothesis: The role of glucose effectiveness (S ) in training-induced improvements in glucose metabolism in individuals with type 2 diabetes is unknown. The objectives and primary outcomes of this study were: (1) to assess the efficacy of interval walking training (IWT) and continuous walking training (CWT) on S and insulin sensitivity (S ) in individuals with type 2 diabetes; and (2) to assess the association of changes in S and S with changes in glycaemic control.
Methods: Fourteen participants with type 2 diabetes underwent three trials (IWT, CWT and no training) in a crossover study.
The soluble receptor for advanced glycation end products (sRAGE) may be protective against inflammation associated with obesity and type 2 diabetes (T2DM). The aim of this study was to determine the distribution of sRAGE isoforms and whether sRAGE isoforms are associated with risk of T2DM development in subjects spanning the glucose tolerance continuum. In this retrospective analysis, circulating total sRAGE and endogenous secretory RAGE (esRAGE) were quantified via ELISA, and cleaved RAGE (cRAGE) was calculated in 274 individuals stratified by glucose tolerance status (GTS) and obesity.
View Article and Find Full Text PDFThe liking and selective ingestion of palatable foods-including sweets-is biologically controlled, and dysfunction of this regulation may promote unhealthy eating, obesity, and disease. The hepatokine fibroblast growth factor 21 (FGF21) reduces sweet consumption in rodents and primates, whereas knockout of Fgf21 increases sugar consumption in mice. To investigate the relevance of these findings in humans, we genotyped variants in the FGF21 locus in participants from the Danish Inter99 cohort (n = 6,514) and examined their relationship with a detailed range of food and ingestive behaviors.
View Article and Find Full Text PDF