IEEE Trans Neural Syst Rehabil Eng
November 2014
Two factors commonly differentiate proposed balance control models for quiet human standing: 1) intermittent muscle activation and 2) prediction that overcomes sensorimotor time delays. In this experiment we assessed the viability and performance of intermittent activation and prediction in a balance control loop that included the neuromuscular dynamics of human calf muscles. Muscles were driven by functional electrical stimulation (FES).
View Article and Find Full Text PDFWe investigate whether the muscle response evoked by an electrically induced vestibular perturbation during standing is related to congruent sensory and motor signals. A robotic platform that simulated the mechanics of a standing person was used to manipulate the relationship between the action of the calf muscles and the movement of the body. Subjects braced on top of the platform with the ankles sway referenced to its motion were required to balance its simulated body-like load by modulating ankle plantar-flexor torque.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
August 2011
Previous studies have shown that human body sway during standing approximates the mechanics of an inverted pendulum pivoted at the ankle joints. In this study, a robotic balance system incorporating a Stewart platform base was developed to provide a new technique to investigate the neural mechanisms involved in standing balance. The robotic system, programmed with the mechanics of an inverted pendulum, controlled the motion of the body in response to a change in applied ankle torque.
View Article and Find Full Text PDF