Publications by authors named "Thomas Olivier"

Kidney damage and dysfunction is an emerging health issue worldwide resulting in high morbidity and mortality rates. Numerous renal diseases are recognized to be driven by the immune system. Despite this recognition, the development of targeted therapies has been challenging as knowledge of the underlying mechanism and complex interactions remains insufficient.

View Article and Find Full Text PDF
Article Synopsis
  • * Elevated CO levels, nutrients, and temperatures lead to harmful algal blooms (HABs), which can negatively impact water quality, ecosystems, and public health due to the production of toxins.
  • * The review discusses the dual role of algal blooms in carbon fixation and their complex metabolites, highlights advancements in understanding these structures, and examines strategies for managing and controlling HABs.
View Article and Find Full Text PDF

Defects in nanocrystals can dramatically alter their physical and chemical behavior. It is thus crucial to understand the defect behavior at the nanoscale to enhance material properties. Here, we report three-dimensional defect characterization at the onset of plasticity in a 550 nm Pt nanoparticle.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on exploring deep-sea invertebrates in Ireland, specifically looking at bubble gum coral collected from a depth of 1500 m in Whittard Canyon, to discover new marine metabolites with potential medical applications.
  • - Researchers isolated three new diterpenes (miolenol, epoxymiolenol, and epoxycoraxeniolide A) and identified their structures using NMR analysis and advanced techniques.
  • - After testing the eight isolated compounds for cytotoxicity and antimalarial activity, none exhibited significant bioactivity, indicating the need for further exploration of deep-sea diversity.
View Article and Find Full Text PDF

Microalgae are of great interest due to their ability to produce valuable compounds, such as pigments, omega-3 fatty acids, antioxidants, and antimicrobials. The dinoflagellate genus Amphidinium is particularly notable for its amphidinol-like compounds, which exhibit antibacterial and antifungal properties. This study utilized a two-stage cultivation method to grow Amphidinium carterae CCAP 1102/8 under varying conditions, such as blue LED light, increased salinity, and the addition of sodium carbonate or hydrogen peroxide.

View Article and Find Full Text PDF

Sponges are recognized as promising sources for novel bioactive metabolites. Among them are terpenoid metabolites that constitute key biochemical defense mechanisms in several sponge taxa. Despite their significance, the genetic basis for terpenoid biosynthesis in sponges remains poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Pulsed field ablation (PFA) is a new method for treating atrial fibrillation (AF) that focuses on ablating heart tissue while minimizing harm to nearby structures.
  • In the MANIFEST-17K study, data from 106 centers involved 17,642 patients and showed no serious complications like esophageal damage, with only a 1% major complication rate.
  • The results suggest that PFA has a strong safety profile and may change how AF is treated, compared to traditional thermal ablation methods.
View Article and Find Full Text PDF

Exploring the chemical diversity present in cyanobacterial mats increasingly frequent in fresh and marine waters is imperative for both evaluating risks associated with these diverse biofilms and their potential for biodiscovery. During a project aimed at the study of the (eco)toxicity of benthic cyanobacteria blooming in some lakes of the West of Ireland, three previously undescribed ahp-cyclodepsipeptides micropeptin LOF941 (1), micropeptin LOF925 (2) and micropeptin LOF953 (3) were isolated from the Microcoleus autumnalis-dominated benthic cyanobacterial biofilm collected from the shore of Lough O'Flynn, Co. Roscommon, Ireland.

View Article and Find Full Text PDF

The chemical diversity of annelids, particularly those belonging to the class Sipuncula, remains largely unexplored. However, as part of a Marine Biodiscovery program in Ireland, the peanut worm emerged as a promising source of unique metabolites. The purification of the MeOH/CHCl extract of this species led to the isolation of six new linear guanidine amides, named phascolosomines A-F (-).

View Article and Find Full Text PDF

Blooms of the dinoflagellate Ostreopsis cf. ovata are regularly associated with human intoxications that are attributed to ovatoxins (OVTXs), the main toxic compounds produced by this organism and close analogs to palytoxin (PlTX). Unlike for PlTX, information on OVTXs'toxicity are scarce due to the absence of commercial standards.

View Article and Find Full Text PDF

In our continuing efforts to describe the biological and chemical diversity of sponges from Kimbe Bay, Papua New Guinea, the known 30-norlanostane saponin sarasinoside C () was identified along with six new analogues named sarasinosides C, C, C, C, C, and C (-) from the sponge . The structures of the new compounds were elucidated by analysis of 1D and 2D NMR and HRMS data, as well as comparison with literature data. All new compounds are characterized by the same tetraose moiety, β-d-Xyl-(1→6)-β-d-GlcNAc-(1→2)-[β-d-GalNAc-(1→4)]-β-d-Xyl, as described previously for sarasinoside C, but differed in their aglycone moieties.

View Article and Find Full Text PDF

In multispectral digital in-line holographic microscopy (DIHM), aberrations of the optical system affect the repeatability of the reconstruction of transmittance, phase and morphology of the objects of interest. Here we address this issue first by model fitting calibration using transparent beads inserted in the sample. This step estimates the aberrations of the optical system as a function of the lateral position in the field of view and at each wavelength.

View Article and Find Full Text PDF

Shellfish contamination with azaspiracids (AZA) is a major and recurrent problem for the Irish shellfish industry. Amphidoma languida, a small thecate dinoflagellate of the family Amphidomataceae, is widely distributed in Irish coastal waters and is one of the identified source species of azaspiracids. Irish and North Sea strains of Am.

View Article and Find Full Text PDF

Modern drug development increasingly requires comprehensive models that can be utilized in the earliest stages of compound and target discovery. Here we report a phenotypic screening exercise in a high-throughput Organ-on-a-Chip setup. We assessed the inhibitory effect of 1537 protein kinase inhibitors in an angiogenesis assay.

View Article and Find Full Text PDF

Aim: A promising approach for the development of next-generation antimicrobials is to shift their target from causing bacterial death to inhibiting virulence. Marine sponges are an excellent potential source of bioactive anti-virulence molecules (AVM). We screened fractions prepared from 26 samples of Irish coastal sponges for anti-biofilm activity against clinically relevant pathogens.

View Article and Find Full Text PDF

With climate projections questioning the future survival of stony corals and their dominance as tropical reef builders, it is critical to understand the adaptive capacity of corals to ongoing climate change. Biological mediation of the carbonate chemistry of the coral calcifying fluid is a fundamental component for assessing the response of corals to global threats. The Tara Pacific expedition (2016-2018) provided an opportunity to investigate calcification patterns in extant corals throughout the Pacific Ocean.

View Article and Find Full Text PDF

Tropical coral reefs are among the most affected ecosystems by climate change and face increasing loss in the coming decades. Effective conservation strategies that maximize ecosystem resilience must be informed by the accurate characterization of extant genetic diversity and population structure together with an understanding of the adaptive potential of keystone species. Here we analyzed samples from the Tara Pacific Expedition (2016-2018) that completed an 18,000 km longitudinal transect of the Pacific Ocean sampling three widespread corals-Pocillopora meandrina, Porites lobata, and Millepora cf.

View Article and Find Full Text PDF

Background: Over the last decade, several coral genomes have been sequenced allowing a better understanding of these symbiotic organisms threatened by climate change. Scleractinian corals are reef builders and are central to coral reef ecosystems, providing habitat to a great diversity of species.

Results: In the frame of the Tara Pacific expedition, we assemble two coral genomes, Porites lobata and Pocillopora cf.

View Article and Find Full Text PDF

Endogenous viral elements (EVEs) offer insight into the evolutionary histories and hosts of contemporary viruses. This study leveraged DNA metagenomics and genomics to detect and infer the host of a non-retroviral dinoflagellate-infecting +ssRNA virus (dinoRNAV) common in coral reefs. As part of the Tara Pacific Expedition, this study surveyed 269 newly sequenced cnidarians and their resident symbiotic dinoflagellates (Symbiodiniaceae), associated metabarcodes, and publicly available metagenomes, revealing 178 dinoRNAV EVEs, predominantly among hydrocoral-dinoflagellate metagenomes.

View Article and Find Full Text PDF

Coral reef science is a fast-growing field propelled by the need to better understand coral health and resilience to devise strategies to slow reef loss resulting from environmental stresses. Key to coral resilience are the symbiotic interactions established within a complex holobiont, i.e.

View Article and Find Full Text PDF

Heat waves are causing declines in coral reefs globally. Coral thermal responses depend on multiple, interacting drivers, such as past thermal exposure, endosymbiont community composition, and host genotype. This makes the understanding of their relative roles in adaptive and/or plastic responses crucial for anticipating impacts of future warming.

View Article and Find Full Text PDF

The Tara Pacific expedition (2016-2018) sampled coral ecosystems around 32 islands in the Pacific Ocean and the ocean surface waters at 249 locations, resulting in the collection of nearly 58 000 samples. The expedition was designed to systematically study warm-water coral reefs and included the collection of corals, fish, plankton, and seawater samples for advanced biogeochemical, molecular, and imaging analysis. Here we provide a complete description of the sampling methodology, and we explain how to explore and access the different datasets generated by the expedition.

View Article and Find Full Text PDF

Health and resilience of the coral holobiont depend on diverse bacterial communities often dominated by key marine symbionts of the Endozoicomonadaceae family. The factors controlling their distribution and their functional diversity remain, however, poorly known. Here, we study the ecology of Endozoicomonadaceae at an ocean basin-scale by sampling specimens from three coral genera (Pocillopora, Porites, Millepora) on 99 reefs from 32 islands across the Pacific Ocean.

View Article and Find Full Text PDF

Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored.

View Article and Find Full Text PDF

Telomeres are environment-sensitive regulators of health and aging. Here,we present telomere DNA length analysis of two reef-building coral genera revealing that the long- and short-term water thermal regime is a key driver of between-colony variation across the Pacific Ocean. Notably, there are differences between the two studied genera.

View Article and Find Full Text PDF