Publications by authors named "Thomas Oligino"

Background: The adeno-associated virus (AAV) has many safety features that favor its use in the treatment of arthritic conditions; however, the conventional, single-stranded vector is inefficient for gene delivery to fibroblastic cells that primarily populate articular tissues. This has been attributed to the inability of these cells to convert the vector to a double-stranded form. To overcome this, we evaluated double-stranded self-complementary (sc) AAV as a vehicle for intra-articular gene delivery.

View Article and Find Full Text PDF

Our work uses replication-defective genomic herpes simplex virus type-1 (HSV-1)-based vectors to transfer therapeutic genes into cells of the central nervous system and other tissues. Obtaining highly purified high-titer vector stocks is one of the major obstacles remaining in the use of these vectors in gene therapy applications. We have examined the effects of temperature and media conditions on the half-life of HSV-1 vectors.

View Article and Find Full Text PDF

The role of B cells in rheumatoid arthritis (RA) has been debated for decades. However, recent clinical trial data indicating that depletion of B cells in RA patients is of therapeutic benefit has validated the importance of this cell type in the pathogenesis of the disease. Elucidation of the molecular basis of B cell development and activation has allowed the identification of a number of possible therapeutic targets that are appealing for drug development.

View Article and Find Full Text PDF

Intra-articular expression of antagonists of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) in arthritic rabbit knee and mouse ankle joints by direct adenoviral-mediated intraarticular delivery results in amelioration of disease pathology in both the treated and contralateral untreated joints. Previous experiments suggest that direct adenoviral infection of resident antigen-presenting cells (APCs) and subsequent traveling of these cells to other sites of inflammation and lymph nodes might be responsible for this "contralateral effect." To determine whether genetic modification of APCs is required for the contralateral effect, we have used an ex vivo approach utilizing genetically modified fibroblasts to express IL-1 receptor antagonist protein (IL-1Ra) and soluble TNF-alpha receptor (sTNFR) locally in arthritic joints.

View Article and Find Full Text PDF

Previous reports have demonstrated the ability of antigen-presenting cells (APCs), genetically modified to express Fas ligand (FasL), to inhibit T-cell responses through the induction of apoptosis of antigen-specific T cells. Here we have examined the ability of primary mouse bone marrow-derived dendritic cells (DCs), genetically modified by adenoviral infection to express FasL, to inhibit progression of established collagen-induced arthritis (CIA) in DBA/1 mice. Systemic injection of DC/FasL into mice with established CIA resulted in substantial disease amelioration as determined by analysis of paw swelling, arthritic index, and number of arthritic paws.

View Article and Find Full Text PDF

Proximal spinal nerve injury results in the death of motor neurons in ventral horn. We have previously demonstrated this cell death can be prevented by HSV-mediated transfer of the gene coding for the antiapoptotic peptide Bcl-2 7 days prior to injury, but that expression of Bcl-2 does not preserve ChAT expression in the lesioned cells. In the current study, we examined two related issues: whether Bcl-2 delivered by HSV-mediated gene transfer 30 min after injury could similarly protect motor neurons from cell death, and whether the additional HSV-mediated expression of the glial cell derived neurotrophic factor (GDNF) could improve the result.

View Article and Find Full Text PDF