Activation of β-adrenergic receptors (β-ARs) not only enhances learning and memory but also facilitates the induction of long-term potentiation (LTP), a form of synaptic plasticity involved in memory formation. To identify the mechanisms underlying β-AR-dependent forms of LTP we examined the effects of the β-AR agonist isoproterenol on LTP induction at excitatory synapses onto CA1 pyramidal cells in the ventral hippocampus. LTP induction at these synapses is inhibited by activation of SK-type K channels, suggesting that β-AR activation might facilitate LTP induction by inhibiting SK channels.
View Article and Find Full Text PDFAlthough Hebbian LTP has an important role in memory formation, the properties of Hebbian LTP cannot fully account for, and in some cases seem incompatible with, fundamental properties of associative learning. Importantly, findings from computational and neurophysiological studies suggest that burst-dependent forms of plasticity, where dendritic spikes and bursts of action potentials provide the postsynaptic depolarization needed for LTP induction, may overcome some of the limitations of conventional Hebbian LTP. Thus, I investigated how excitatory synapses onto CA1 pyramidal cells interact during the induction of complex spike (CS) burst-dependent LTP in hippocampal slices from male mice.
View Article and Find Full Text PDFThe ACC is implicated in effort exertion and choices based on effort cost, but it is still unclear how it mediates this cost-benefit evaluation. Here, male rats were trained to exert effort for a high-value reward (sucrose pellets) in a progressive ratio lever-pressing task. Trained rats were then tested in two conditions: a no-choice condition where lever-pressing for sucrose was the only available food option, and a choice condition where a low-value reward (lab chow) was freely available as an alternative to pressing for sucrose.
View Article and Find Full Text PDFCognitive impairment (CI), a debilitating and pervasive feature of multiple sclerosis (MS), is correlated with hippocampal atrophy. Findings from postmortem MS hippocampi indicate that expression of genes involved in both excitatory and inhibitory neurotransmission are altered in MS, and although deficits in excitatory neurotransmission have been reported in the MS model experimental autoimmune encephalomyelitis (EAE), the functional consequence of altered inhibitory neurotransmission remains poorly understood. In this study, we used electrophysiological and biochemical techniques to examine inhibitory neurotransmission in the CA1 region of the hippocampus in EAE.
View Article and Find Full Text PDFThe GluN2 subtype (2A versus 2B) determines biophysical properties and signaling of forebrain NMDA receptors (NMDARs). During development, GluN2A becomes incorporated into previously GluN2B-dominated NMDARs. This "switch" is proposed to be driven by distinct features of GluN2 cytoplasmic C-terminal domains (CTDs), including a unique CaMKII interaction site in GluN2B that drives removal from the synapse.
View Article and Find Full Text PDFAlthough the activation of extrasynaptic GluN2B-containing N-methyl-d-aspartate (NMDA) receptors has been implicated in neurodegenerative diseases, such as Alzheimer's and Huntington's disease, their physiological function remains unknown. In this study, we found that extrasynaptic GluN2B receptors play a homeostatic role by antagonizing long-term potentiation (LTP) induction under conditions of prolonged synaptic stimulation. In particular, we have previously found that brief theta-pulse stimulation (5 Hz for 30 s) triggers robust LTP, whereas longer stimulation times (5 Hz for 3 min) have no effect on basal synaptic transmission in the hippocampal CA1 region.
View Article and Find Full Text PDFDysfunction of the neuronal RNA binding protein RBFOX1 has been linked to epilepsy and autism spectrum disorders. Rbfox1 loss in mice leads to neuronal hyper-excitability and seizures, but the physiological basis for this is unknown. We identify the vSNARE protein Vamp1 as a major Rbfox1 target.
View Article and Find Full Text PDFLong-lasting forms of synaptic plasticity that underlie learning and memory require new transcription and translation for their persistence. The remarkable polarity and compartmentalization of neurons raises questions about the spatial and temporal regulation of gene expression within neurons. Alternative cleavage and polyadenylation (APA) generates mRNA isoforms with different 3' untranslated regions (3'UTRs) and/or coding sequences.
View Article and Find Full Text PDFAlthough long thought to simply be a source of synaptic noise, spontaneous, action potential-independent release of neurotransmitter from presynaptic terminals has multiple roles in synaptic function. We explored whether and to what extent the two predominantly proposed mechanisms for explaining spontaneous release, stochastic activation of voltage-gated Ca channels (VGCCs) or activation of Ca-sensing receptors (CaSRs) by extracellular Ca, played a role in the sensitivity of spontaneous release to the level of extracellular Ca concentration at excitatory synapses at CA1 pyramidal cells of the adult male mouse hippocampus. Blocking VGCCs with Cd had no effect on spontaneous release, ruling out stochastic activation of VGCCs.
View Article and Find Full Text PDFThe persistence of long-lasting changes in synaptic connectivity that underlie long-term memory require new RNA and protein synthesis. To elucidate the temporal pattern of gene expression that gives rise to long-lasting neuronal plasticity, we analyzed differentially-expressed (DE) RNAs in mouse hippocampal slices following induction of late phase long-term potentiation (L-LTP) specifically within pyramidal excitatory neurons using Translating Ribosome Affinity Purification RNA sequencing (TRAP-seq). We detected time-dependent changes in up- and down-regulated ribosome-associated mRNAs over 2 h following L-LTP induction, with minimal overlap of DE transcripts between time points.
View Article and Find Full Text PDFConducting research on the Acute Medical Unit (AMU) poses unique challenges; the environment is one that sees a diverse range of patient groups and pathologies and holds the potential for easy patient recruitment to research studies, however is geared towards a specific set of triage and discharge goals. We conducted a study into Stress Hyperglycaemia (SH) on a busy AMU, which involved profiling glycaemic changes using specialist equipment and interventions in patients with unscheduled medical admissions, and experienced a number of challenges. This article discusses these challenges and proposes potential solutions.
View Article and Find Full Text PDFBehavioral, physiological, and anatomical evidence indicates that the dorsal and ventral zones of the hippocampus have distinct roles in cognition. How the unique functions of these zones might depend on differences in synaptic and neuronal function arising from the strikingly different gene expression profiles exhibited by dorsal and ventral CA1 pyramidal cells is unclear. To begin to address this question, we investigated the mechanisms underlying differences in synaptic transmission and plasticity at dorsal and ventral Schaffer collateral (SC) synapses in the mouse hippocampus.
View Article and Find Full Text PDFThe postsynaptic site of neurons is composed of more than 1500 proteins arranged in protein-protein interaction complexes, the composition of which is modulated by protein phosphorylation through the actions of complex signaling networks. Components of these networks function as key regulators of synaptic plasticity, in particular hippocampal long-term potentiation (LTP). The postsynaptic density (PSD) is a complex multicomponent structure that includes receptors, enzymes, scaffold proteins, and structural proteins.
View Article and Find Full Text PDFHow neuronal proteomes self-organize is poorly understood because of their inherent molecular and cellular complexity. Here, focusing on mammalian synapses we use blue-native PAGE and 'gene-tagging' of GluN1 to report the first biochemical purification of endogenous NMDA receptors (NMDARs) directly from adult mouse brain. We show that NMDARs partition between two discrete populations of receptor complexes and ∼1.
View Article and Find Full Text PDFDephosphorylation of AMPA receptor (AMPAR) GluA1 subunits at two sites, serine 845 (S845) and threonine 840 (T840), is thought to be involved in NMDA receptor-dependent forms of long-term depression (LTD). Importantly, the notion that dephosphorylation of these sites contributes to LTD assumes that a significant fraction of GluA1 subunits are basally phosphorylated at these sites. To examine this question, we used immunoprecipitation/depletion assays to estimate the proportion of GluA1 subunits basally phosphorylated at S845 and T840.
View Article and Find Full Text PDFRobust sleep/wake rhythms are important for health and cognitive function. Unfortunately, many people are living in an environment where their circadian system is challenged by inappropriate meal- or work-times. Here we scheduled food access to the sleep time and examined the impact on learning and memory in mice.
View Article and Find Full Text PDFEncoding new information in the brain requires changes in synaptic strength. Neuromodulatory transmitters can facilitate synaptic plasticity by modifying the actions and expression of specific signaling cascades, transmitter receptors and their associated signaling complexes, genes, and effector proteins. One critical neuromodulator in the mammalian brain is norepinephrine (NE), which regulates multiple brain functions such as attention, perception, arousal, sleep, learning, and memory.
View Article and Find Full Text PDFThe spatiotemporal activities of astrocyte Ca²⁺ signaling in mature neuronal circuits remain unclear. We used genetically encoded Ca²⁺ and glutamate indicators as well as pharmacogenetic and electrical control of neurotransmitter release to explore astrocyte activity in the hippocampal mossy fiber pathway. Our data revealed numerous localized, spontaneous Ca²⁺ signals in astrocyte branches and territories, but these were not driven by neuronal activity or glutamate.
View Article and Find Full Text PDFPrevious studies have provided strong support for the notion that NMDAR-mediated increases in postsynaptic Ca(2+) have a crucial role in the induction of long-term depression (LTD). This view has recently been challenged, however, by findings suggesting that LTD induction is instead attributable to an ion channel-independent, metabotropic form of NMDAR signaling. Thus, to explore the role of ionotropic versus metabotropic NMDAR signaling in LTD, we examined the effects of varying extracellular Ca(2+) levels or blocking NMDAR channel ion fluxes with MK-801 on LTD and NMDAR signaling in the mouse hippocampal CA1 region.
View Article and Find Full Text PDFThe C terminus of AMPA-type glutamate receptor (AMPAR) GluA1 subunits contains several phosphorylation sites that regulate AMPAR activity and trafficking at excitatory synapses. Although many of these sites have been extensively studied, little is known about the signaling mechanisms regulating GluA1 phosphorylation at Thr-840. Here, we report that neuronal depolarization in hippocampal slices induces a calcium and protein phosphatase 1/2A-dependent dephosphorylation of GluA1 at Thr-840 and a nearby site at Ser-845.
View Article and Find Full Text PDFAstrocytes are found throughout the brain where they make extensive contacts with neurons and synapses. Astrocytes are known to display intracellular Ca(2+) signals and release signaling molecules such as D-serine into the extracellular space. However, the role(s) of astrocyte Ca(2+) signals in hippocampal long-term potentiation (LTP), a form of synaptic plasticity involved in learning and memory, remains unclear.
View Article and Find Full Text PDFTwo genome duplications early in the vertebrate lineage expanded gene families, including GluN2 subunits of the NMDA receptor. Diversification between the four mammalian GluN2 proteins occurred primarily at their intracellular C-terminal domains (CTDs). To identify shared ancestral functions and diversified subunit-specific functions, we exchanged the exons encoding the GluN2A (also known as Grin2a) and GluN2B (also known as Grin2b) CTDs in two knock-in mice and analyzed the mice's biochemistry, synaptic physiology, and multiple learned and innate behaviors.
View Article and Find Full Text PDF