Publications by authors named "Thomas Notermans"

Achilles tendon rupture is a common debilitating medical condition. The healing process is slow and can be affected by heterotopic ossification (HO), which occurs when pathologic bone-like tissue is deposited instead of the soft collagenous tendon tissue. Little is known about the temporal and spatial progression of HO during Achilles tendon healing.

View Article and Find Full Text PDF

During Achilles tendon healing in rodents, besides the expected tendon tissue, also cartilage-, bone- and fat-like tissue features have been observed during the first twenty weeks of healing. Several studies have hypothesized that mechanical loading may play a key role in the formation of different tissue types during healing. We recently developed a computational mechanobiological framework to predict tendon tissue production, organization and mechanical properties during tendon healing.

View Article and Find Full Text PDF

Mechanobiology plays an important role in tendon healing. However, the relationship between mechanical loading and spatial and temporal evolution of tendon properties during healing is not well understood. This study builds on a recently presented mechanoregulatory computational framework that couples mechanobiological tendon healing to tissue production and collagen orientation.

View Article and Find Full Text PDF

Mechano-regulation during tendon healing, i.e. the relationship between mechanical stimuli and cellular response, has received more attention recently.

View Article and Find Full Text PDF

Mechanical loading affects tendon healing and recovery. However, our understanding about how physical loading affects recovery of viscoelastic functions, collagen production and tissue organisation is limited. The objective of this study was to investigate how different magnitudes of loading affects biomechanical and collagen properties of healing Achilles tendons over time.

View Article and Find Full Text PDF

In idiopathic pulmonary fibrosis (IPF) structural properties of the extracellular matrix (ECM) are altered and influence cellular responses through cell-matrix interactions. Scaffolds (decellularized tissue) derived from subpleural healthy and IPF lungs were examined regarding biomechanical properties and ECM composition of proteins (the matrisome). Scaffolds were repopulated with healthy fibroblasts cultured under static stretch with heavy isotope amino acids (SILAC), to examine newly synthesized proteins over time.

View Article and Find Full Text PDF

Understanding tendon mechanobiology is important for gaining insight into the development of tendon pathology and subsequent repair processes. The aim of this study was to investigate how experimentally observed mechanobiological adaptation of rat Achilles tendons translate to changes in constitutive mechanical properties and biomechanical behavior. In addition, we assessed the ability of the model to simulate tendon creep and stress-relaxation.

View Article and Find Full Text PDF