Publications by authors named "Thomas Noblet"

A bipartite system is defined as two microscopic entities being able to exchange energy. When excited by light, the complete optical response functions at first (polarizabilities) and second orders (first hyperpolarizabilities) of such a system are determined using the diagrammatic theory of optics. The generality of the method is ensured by the free choice of light-matter and matter-matter interaction Hamiltonians and by the arbitrary number of quanta involved in the energy exchange.

View Article and Find Full Text PDF

Second-order nonlinear processes like Sum-Frequency Generation (SFG) are essentially defined in the electric dipolar approximation. However, when dealing with the SFG responses of bulk, big nanoparticles, highly symmetric objects, or chiral species, magnetic and quadrupolar contributions play a significant role in the process too. We extend the diagrammatic theory for linear and nonlinear optics to include these terms for single objects as well as for multipartite systems in interaction.

View Article and Find Full Text PDF

While colloidal quantum dots (QDs) are commonly used as fluorescent donors within biosensors based on Förster resonant energy transfer (FRET), they are hesitantly employed as acceptors. On the sole basis of Förster theory and the well-known behaviour of organic dyes, it is often argued that the QD absorption band over the UV-visible range is too wide. Discarding these preconceptions inherited from classical fluorophores, we experimentally examine the FRET process occurring between donor and acceptor CdTe QDs and provide a mathematical description of it.

View Article and Find Full Text PDF

Hypothesis: The fluorescence emission of water-soluble CdTe quantum dots (QDs) capped with mercaptocarboxylic acids (MCAs) is known to be pH-dependent. However, this behaviour is quite different from a study to another, so that literature suffers from a lack of coherence. Here we assume that the QD fluorescence efficiency is actually driven by the acid-base equilibrium of MCA thiol groups, and that light-excited QDs open a non-radiative relaxation path through photoinduced protonation.

View Article and Find Full Text PDF

In this paper, we report on the study of a novel type of substrate based on a highly crystalline ZnO film photo-irradiated using UV for enhancing the Raman signal. This effect is called photo-induced enhanced Raman spectroscopy (PIERS). This PIERS substrate is composed of a photo-irradiated thin ZnO film on which gold nanoparticles are deposited and allows large photo-induced SERS enhancement to be obtained for the chemical detection of small molecules compared to normal SERS signals.

View Article and Find Full Text PDF

As luminescent quantum dots (QDs) are known to aggregate themselves through their chemical activation by carbodiimide chemistry and their functionalization with biotin molecules, we investigate both effects on the fluorescence properties of CdTe QDs and their impact on Förster Resonant Energy Transfer (FRET) occurring with fluorescent streptavidin molecules (FA). First, the QDs fluorescence spectrum undergoes significant changes during the activation step which are explained thanks to an original analytical model based on QDs intra-aggregate screening and inter-QDs FRET. We also highlight the strong influence of biotin in solution on FRET efficiency, and define the experimental conditions maximizing the FRET.

View Article and Find Full Text PDF

We report on the recent scientific research contribution of non-linear optics based on Sum-Frequency Generation (SFG) spectroscopy as a surface probe of the plasmonic properties of materials. In this review, we present a general introduction to the fundamentals of SFG spectroscopy, a well-established optical surface probe used in various domains of physical chemistry, when applied to plasmonic materials. The interest of using SFG spectroscopy as a complementary tool to surface-enhanced Raman spectroscopy in order to probe the surface chemistry of metallic nanoparticles is illustrated by taking advantage of the optical amplification induced by the coupling to the localized surface plasmon resonance.

View Article and Find Full Text PDF

We investigate the effects of the concentration of CdTe quantum dots (QDs) on their fluorescence in water. The emission spectra, acquired in right angle geometry, exhibit highly variable shapes. The measurements evidence a critical value of the concentration beyond which the intensity and the spectral bandwidth decrease and the fluorescence maximum is redshifted.

View Article and Find Full Text PDF