Publications by authors named "Thomas Nehls"

Human histone deacetylase 4 (HDAC4) belongs to class IIa of the zinc-dependent histone deacetylases. HDAC4 is an established target for various indication areas, in particular Huntington's disease, heart failure and cancer. To reduce unwanted side effects, it is advantageous to develop isozyme-selective inhibitors, which poses a major challenge due to the highly conserved active centers of the HDAC family.

View Article and Find Full Text PDF

Histone deacetylase 4 (HDAC4) contributes to gene repression by complex formation with HDAC3 and the corepressor silencing mediator for retinoid or thyroid hormone receptors (SMRT). We hypothesized that peptides derived from the class IIa specific binding site of SMRT would stabilize a specific conformation of its target protein and modulate its activity. Based on the SMRT-motif 1 (SM1) involved in the interaction of SMRT with HDAC4, we systematically developed cyclic peptides that exhibit K values that are 9 to 56 times lower than that of the linear SMRT peptide.

View Article and Find Full Text PDF

Engineering at the amino acid level is key to enhancing the properties of existing proteins in a desired manner. So far, protein engineering has been dominated by genetic approaches, which have been extremely powerful but only allow for minimal variations beyond the canonical amino acids. Chemical peptide synthesis allows the unrestricted incorporation of a vast set of unnatural amino acids with much broader functionalities, including the incorporation of post-translational modifications or labels.

View Article and Find Full Text PDF

Human histone deacetylase 4 (HDAC4) is a key epigenetic regulator involved in a number of important cellular processes. This makes HDAC4 a promising target for the treatment of several cancers and neurodegenerative diseases, in particular Huntington's disease. HDAC4 is highly regulated by phosphorylation and oxidation, which determine its nuclear or cytosolic localization, and exerts its function through multiple interactions with other proteins, forming multiprotein complexes of varying composition.

View Article and Find Full Text PDF

Sulfonamides are one of the most important pharmacophores in medicinal chemistry, and sulfonamide analogues have gained substantial interest in recent years. However, the protein interactions of sulfonamides and especially of their analogues are underexplored. Using FKBP12 as a model system, we describe the synthesis of optically pure sulfenamide, sulfinamide, and sulfonimidamide analogues of a well characterized sulfonamide ligand.

View Article and Find Full Text PDF

In order to understand protein structure to a sufficient extent for, e.g., drug discovery, no single technique can provide satisfactory information on both the lowest-energy conformation and on dynamic changes over time (the 'four-dimensional' protein structure).

View Article and Find Full Text PDF

Reclaimed tidal land soil (RTLS) often contains high levels of soluble salts and exchangeable Na that can adversely affect plant growth. The current study examined the effect of biochar on the physicochemical properties of RTLS and subsequently the influence on plant growth performance. Rice hull derived biochar (BC) was applied to RTLS at three different rates (1%, 2%, and 5% (w/w)) and maize (Zea mays L.

View Article and Find Full Text PDF