Brain-computer interfaces (BCIs) can be used for communication in writing without muscular activity or for learning to control seizures by voluntary regulation of brain signals such as the electroencephalogram (EEG). Three of five patients with epilepsy were able to spell their names with electrocorticogram (ECoG) signals derived from motor-related areas within only one or two training sessions. Imagery of finger or tongue movements was classified with support-vector classification of autoregressive coefficients derived from the ECoG signals.
View Article and Find Full Text PDFWe summarize results from a series of related studies that aim to develop a motor-imagery-based brain-computer interface using a single recording session of electroencephalogram (EEG) or electrocorticogram (ECoG) signals for each subject. We apply the same experimental and analytical methods to 11 nonparalysed subjects (eight EEG, three ECoG), and to five paralyzed subjects (four EEG, one ECoG) who had been unable to communicate for some time. While it was relatively easy to obtain classifiable signals quickly from most of the nonparalyzed subjects, it proved impossible to classify the signals obtained from the paralyzed patients by the same methods.
View Article and Find Full Text PDFDesigning a brain computer interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying electroencephalogram (EEG) signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination and Zero-Norm Optimization which are based on the training of support vector machines (SVM). These algorithms can provide more accurate solutions than standard filter methods for feature selection.
View Article and Find Full Text PDF