Microbiome-directed dietary interventions such as microbiota-directed fibers (MDFs) have a proven track record in eliciting responses in beneficial gut microbes and are increasingly being promoted as an effective strategy to improve animal production systems. Here we used initial metataxonomic data on fish gut microbiomes as well as a wealth of a priori mammalian microbiome knowledge on α-mannooligosaccharides (MOS) and β-mannan-derived MDFs to study effects of such feed supplements in Atlantic salmon (Salmo salar) and their impact on its gut microbiome composition and functionalities. Our multi-omic analysis revealed that the investigated MDFs (two α-mannans and an acetylated β-galactoglucomannan), at a dose of 0.
View Article and Find Full Text PDFThis study facilitates design of expression vectors and lentivirus tools for gene editing of Atlantic salmon. We have characterized widely used heterologous promoters and novel endogenous promoters in Atlantic salmon cells. We used qPCR to evaluate the activity of several U6 promoters for sgRNA expression, including human U6 (hU6), tilapia U6 (tU6), mouse U6 (mU6), zebrafish U6 (zU6), Atlantic salmon U6 (sU6), medaka U6 (medU6), and fugu U6 (fU6) promoters.
View Article and Find Full Text PDFThe anadromous Atlantic salmon undergo a preparatory physiological transformation before seawater entry, referred to as smoltification. Key molecular developmental processes involved in this life stage transition, such as remodeling of gill functions, are known to be synchronized and modulated by environmental cues like photoperiod. However, little is known about the photoperiod influence and genome regulatory processes driving other canonical aspects of smoltification such as the large-scale changes in lipid metabolism and energy homeostasis in the developing smolt liver.
View Article and Find Full Text PDFThe expansion of genomic resources for Atlantic salmon over the past half decade has enabled efficient interrogation of genetic traits by large-scale correlation of genotype to phenotype. Moving from correlation to causation will require genotype-phenotype relationships to be tested experimentally in a cost-efficient and cell context-relevant manner. To enable such future experiments, we have developed a method for the isolation and genetic manipulation of primary hepatocytes from Atlantic salmon for use in heterologous expression, reporter assay, and gene editing experiments.
View Article and Find Full Text PDFSalmon is an important source of long-chain highly unsaturated fatty acids (LC-HUFAs) such as 22:6-3 [docosahexaenoic acid (DHA)]. In the present study, we conducted two identical experiments on salmon in freshwater (FW) and seawater (SW) stages, with a diet switch from fish oil (high in LC-HUFA) to vegetable oil (low in LC-HUFA) and vice versa. Our aim was to investigate the diet and life stage-specific features of lipid uptake (gut), processing (liver), and deposition (muscle).
View Article and Find Full Text PDFDomestication of animals imposes strong targeted selection for desired traits but can also result in unintended selection due to new domestic environments. Atlantic salmon (Salmo salmar) was domesticated in the 1970s and has subsequently been selected for faster growth in systematic breeding programmes. More recently, salmon aquaculture has replaced fish oils (FOs) with vegetable oils (VOs) in feed, radically changing the levels of essential long-chain polyunsaturated fatty acids (LC-PUFAs).
View Article and Find Full Text PDFFatty acid desaturase 2 (Fads2) is the key enzyme of long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis. Endogenous production of these biomolecules in vertebrates, if present, is insufficient to meet demand. Hence, LC-PUFA are considered as conditionally essential.
View Article and Find Full Text PDFHepatic lipid metabolism is traditionally investigated in vitro using hepatocyte monocultures lacking the complex three-dimensional structure and interacting cell types essential liver function. Precision cut liver slice (PCLS) culture represents an alternative in vitro system, which benefits from retention of tissue architecture. Here, we present the first comprehensive evaluation of the PCLS method in fish (Atlantic salmon, Salmo salar L.
View Article and Find Full Text PDFAtlantic salmon migrates from rivers to sea to feed, grow and develop gonads before returning to spawn in freshwater. The transition to marine habitats is associated with dramatic changes in the environment, including water salinity, exposure to pathogens and shift in dietary lipid availability. Many changes in physiology and metabolism occur across this life-stage transition, but little is known about the molecular nature of these changes.
View Article and Find Full Text PDFIn silico analysis of three Penaeus stylirostris densovirus (PstDNV) promoters, designated P2, P11, and P61, revealed sequence motifs including the TATA box, downstream promoter element (DPE), GC- and A-rich regions, inverted repeat, activation sequence-1 like (ASL) box, and a conserved guanosine (G) at +24. To delineate the regulatory role of these motifs on promoter activity, deletion constructs were made in a promoter assay vector, pGL3 Basic, that contains a luciferase reporter gene. Luciferase assay showed that P2 had the highest promoter activity followed by P11 and P61 in Sf9 cells.
View Article and Find Full Text PDF