Levodopa/carbidopa remains the gold standard for treating Parkinson disease (PD), but chronic pulsatile administration contributes to motor complications. This Phase 1 study used a new immediate-release (IR) formulation of carbidopa/levodopa 25/100 mg that is functionally scored for easy and precise splitting to evaluate the effects on levodopa plasma variability when smaller doses are taken more frequently. These functionally scored tablets were shown to be bioequivalent to carbidopa/levodopa 25-/100-mg IR generic reference tablets.
View Article and Find Full Text PDFHuman mesenchymal stem cells have been explored for their application in cell-based therapies targeting stroke. Identifying cell lines that stand as safe, accessible, and effective for transplantation, while optimizing dosage, timing, and method of delivery remain critical translational steps towards clinical trials. Preclinical studies using bone marrow-derived NCS-01 cells show the cells' ability to confer functional recovery in ischemic stroke.
View Article and Find Full Text PDFStem Cells Transl Med
February 2020
The present study used in vitro and in vivo stroke models to demonstrate the safety, efficacy, and mechanism of action of adult human bone marrow-derived NCS-01 cells. Coculture with NCS-01 cells protected primary rat cortical cells or human neural progenitor cells from oxygen glucose deprivation. Adult rats that were subjected to middle cerebral artery occlusion, transiently or permanently, and subsequently received intracarotid artery or intravenous transplants of NCS-01 cells displayed dose-dependent improvements in motor and neurological behaviors, and reductions in infarct area and peri-infarct cell loss, much better than intravenous administration.
View Article and Find Full Text PDFNeurotherapeutics
April 2017
Available cholinergic drugs for treating Alzheimer's disease (AD) provide modest symptomatic benefit. We hypothesized that co-administration of a peripheral anticholinergic to reduce dose-limiting adverse effects (AEs) would enable the safe/tolerable use of higher cholinesterase inhibitor doses and thus improve their antidementia efficacy. A modified single-blind, ascending-dose, phase IIa study of donepezil plus solifenacin (CPC-201) lasting 26 weeks was conducted in 41 patients with probable AD of moderate severity.
View Article and Find Full Text PDFNeurotox Res
February 2011
Apathy is an increasingly recognized concomitant of a broad range of central nervous system disorders. Nevertheless, its nosology, pathogenesis and therapy remain shrouded in confusion and controversy. As yet, there is little consensus regarding methods for detecting apathy, or distinguishing it from depression, or for assessing its severity.
View Article and Find Full Text PDFA potent 5-hydroxytryptamine (5-HT)2A receptor inverse agonist and antagonist, ACP-103 [N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N'-(4-(2-methylpropyloxy)phenylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2:1, active:salt)], was evaluated for its ability to reduce the primary motor symptom of tremor using tacrine-induced tremulous jaw movements in rats, which is an animal model of parkinsonian tremor. Furthermore, ACP-103 was evaluated for its ability to reduce levodopa-induced dyskinesias in monkeys rendered parkinsonian with MPTP [1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine]. ACP-103 reduced tacrine-induced tremulous jaw movements in rats.
View Article and Find Full Text PDFCell cycle reentry has been found during apoptosis of postmitotic neurons under certain pathological conditions. To evaluate whether nuclear factor-kappaB (NF-kappaB) activation promotes cell cycle entry and neuronal apoptosis, we studied the relation among NF-kappaB-mediated cyclin induction, bromodeoxyuridine (BrdU) incorporation, and apoptosis initiation in rat striatal neurons following excitotoxic insult. Intrastriatally injected N-methyl-D-aspartate receptor agonist quinolinic acid (QA, 60 nmol) elicited a rise in cyclin D1 mRNA and protein levels (P<0.
View Article and Find Full Text PDFTo evaluate the contribution of NF-kappaB and the NF-kappaB target gene p53 to nigral dopaminergic neuron degeneration in rodent models of Parkinson's disease, time-course of dopaminergic neuron loss as well as changes in the expression of some NF-kappaB-regulated proapoptotic proteins were assayed after unilateral infusion of 6-hydroxydopamine into rat medial forebrain bundle. Substantial loss of tyrosine hydroxylase immunoreactivity in nigral was observed 24 h after 6-hydroxydopamine treatment. The degenerative processes began 12 h after 6-hydroxydopamine administration as evidenced by a positive silver staining.
View Article and Find Full Text PDFReported benefits of various glutamatergic receptor antagonists in Parkinson's disease (PD) prompted an evaluation of the antidyskinetic effect of a putative glutamate release inhibitor in 15 moderately advanced patients. In a 3-week, double-blind, proof-of-concept study, riluzole (200 mg/day) failed to alter parkinsonian or levodopa-induced motor complication severity. Opposing effects of a generalized inhibition of glutamate-mediated synaptic transmission may limit the usefulness of this approach to treat PD.
View Article and Find Full Text PDFThe present studies evaluated the potential contribution of Bcl-2, p53, and c-Myc to the differential vulnerability of striatal neurons to the excitotoxin quinolinic acid (QA). In normal rat striatum, Bcl-2 immunoreactivity (Bcl-2-i) was most intense in large aspiny interneurons including choline acetyltransferase positive (CAT+) and parvalbumin positive (PARV+) neurons, but low in a majority of medium-sized neurons. In human brain, intense Bcl-2-i was seen in large striatal neurons but not in medium-sized spiny projection neurons.
View Article and Find Full Text PDFIntermittent stimulation of striatal dopaminergic receptors seems to contribute to motor dysfunction in advanced Parkinson's disease (PD). With severe dopaminergic denervation, exogenous levodopa is largely decarboxylated to dopamine in serotonergic terminals. If 5-HT1A autoreceptors regulate dopamine as well as serotonin release, in parkinsonian patients inhibition of striatal serotonergic neuron firing might help maintain more physiological intrasynaptic dopamine concentrations and thus ameliorate motor fluctuations and dyskinesias.
View Article and Find Full Text PDFThe present study evaluated the neuroprotective potential of prostaglandin A1 (PGA1) in rodent models of focal cerebral ischemia. PGA1 33 nmol reduced infarction volume by about 43% (P < 0.05) when administered intracerebroventricularly before and after transient ischemia in mice.
View Article and Find Full Text PDFLevodopa or short-acting dopamine (DA) agonist treatment of advanced parkinsonian patients exposes striatal DA receptors to non-physiologic intermittent stimulation that contributes to the development of dyskinesias and other motor complications. To determine whether continuous dopaminergic stimulation can delay or prevent onset of motor complications, four MPTP-lesioned, levodopa-naive cynomolgus monkeys were implanted subcutaneously with apomorphine containing ethylene vinyl acetate rods. Three other MPTP-lesioned monkeys received daily injections of apomorphine.
View Article and Find Full Text PDFDopamine reuptake blockers, by enhancing and stabilizing intrasynaptic transmitter levels, could help palliate motor dysfunction in Parkinson's disease. This randomized, double-blind, placebo-controlled study compared the acute effects of the monoamine uptake inhibitor NS 2330 to those of placebo in 9 relatively advanced parkinsonian patients. At the dose administered, no change in parkinsonian scores was found when NS 2330 was given alone or with levodopa.
View Article and Find Full Text PDFKnowledge of molecular events contributing to motor dysfunction in Parkinson's disease has advanced rapidly during the past decade. Studies in animal models as well as in patients afflicted by this disorder suggest that the nonphysiologic stimulation of striatal dopamine receptors, first as a result of dopaminergic denervation and later as a consequence of the intermittent high-intensity stimulation produced by standard therapeutic regimens, leads to plastic changes in striatal medium spiny neurons. The clinical appearance of parkinsonism and subsequently of motor response complications is associated with the aberrant activation of signaling cascades within medium spiny neurons that modify the phosphorylation state of their ionotropic glutamatergic receptors.
View Article and Find Full Text PDFThe neuronal protein alpha-synuclein has been implicated in the pathogenesis of Parkinson disease and other neurodegenerative diseases. Although many studies report that alpha-synuclein expression is restricted to neuronal presynaptic terminals, this protein aggregates in Lewy bodies in somata that are typically distant from their axon terminals. Few studies have addressed this paradox and there has been no compelling explanation proposed for the apparent discrepancy between the locus of neuronal alpha-synuclein expression and the loci of Lewy bodies in the majority of Parkinson disease cases.
View Article and Find Full Text PDFThe nonphysiologic stimulation of striatal dopaminergic receptors, as a result of disease- or drug-related denervation or intermittent excitation, triggers adaptive responses in the basal ganglia which contribute to the appearance of parkinsonian symptoms and later to the dyskinesias and other alterations in motor response associated with dopaminergic therapy. Current evidence suggests that these altered responses involve activation of signal transduction cascades in striatal medium spiny neurons linking dopaminergic to coexpressed ionotropic glutamatergic receptors of the N-methyl-D-aspartate (NMDA) and Alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) classes. These intraneuronal signaling pathways appear capable of modifying the phosphorylation state of NMDA and AMPA receptor subunits; resultant sensitization enhances cortical glutamatergic input which in turn modifies striatal output in ways that compromise motor behavior.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
June 2003
Various restorative cell transplantation strategies have been investigated to substitute for lost dopamine (DA) neurons or to enhance DA synthesis in Parkinson's disease. Intracerebral implantation of engineered cells encapsulated in a semipermeable polymer membrane constitutes one way to deliver bioactive substances unable to cross the blood-brain barrier while avoiding the need for long-term immunosuppression. Glial cell line-derived neurotrophic factor (GDNF) has shown trophic effects on DA neurons but effective and sustained delivery within the brain parenchyma remains problematic.
View Article and Find Full Text PDFActivation of cAMP responsive element binding protein (CREB) has been increasingly implicated in the formation and maintenance of long-term memory. To elucidate molecular mechanisms that underlie the persisting alterations in motor response occurring with levodopa (L-dopa) treatment of parkinsonian patients, we evaluated the time course of these changes in relation to the activation of striatal CREB in 6-hydroxydopamine (6-OHDA) lesioned animals. Three weeks of twice-daily L-dopa treatment reduced the duration of the rotational response to acute L-dopa challenge in hemiparkinsonian rats, which lasted about 5 weeks after withdrawal of chronic L-dopa therapy.
View Article and Find Full Text PDFAlterations in motor response that complicate levodopa treatment of Parkinson's disease appear to involve sensitization of striatal ionotropic glutamate receptors. Since protein kinase C (PKC)-mediated phosphorylation regulates glutamatergic receptors of the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) subtype and has been linked to several forms of behavioral plasticity, activation of PKC signaling in striatal spiny neurons may also contribute to the motor plasticity changes associated with chronic levodopa therapy. To evaluate this possibility, we sought to augment PKC signaling by using Herpes Simplex Virus type 1 vectors (pHSVpkcDelta) to directly transfer the catalytic domain of the PKCbetaII gene into striatal neurons of parkinsonian rats.
View Article and Find Full Text PDFOur paper documents that land-use change impacts regional and global climate through the surface-energy budget, as well as through the carbon cycle. The surface-energy budget effects may be more important than the carbon-cycle effects. However, land-use impacts on climate cannot be adequately quantified with the usual metric of 'global warming potential'.
View Article and Find Full Text PDFThe degeneration of nigral dopamine neurons in Parkinson's disease (PD) reportedly involves a defect in brain mitochondrial complex I in association with the activation of nuclear factor-kappaB (NF-kappaB) and caspase-3. To elucidate molecular mechanisms possibly linking these events, as well as to evaluate the neuroprotective potential of the cyclopentenone prostaglandin A1 (PGA1), an inducer of heat shock proteins (HSPs), we exposed human dopaminergic SH-SY5Y cells to the complex I inhibitor rotenone. Dose-dependent apoptosis was preceded by the nuclear translocation of NF-kappaB and then the activation of caspase-3 over the ensuing 24 h.
View Article and Find Full Text PDFThe contribution of serotoninergic mechanisms to motor dysfunction in Parkinson's disease (PD) has yet to be fully elucidated. Recent clinical observations increasingly suggest that drugs able to block serotonin 5HT2A/C receptors can benefit patients with certain extrapyramidal movement disorders. To further explore the roles of these and other neurotransmitter receptors in the pathogenesis of parkinsonian signs and levodopa-induced dyskinesias; we evaluated the effects of quetiapine, an atypical antipsychotic with 5HT2A/C and D2/3 antagonistic activity, on motor behavior in 6-hydroxydopamine-lesioned rats and MPTP-lesioned nonhuman primates.
View Article and Find Full Text PDF