The fabrication of organic optoelectronic devices integrating asymmetric electrodes enables optimal charge injection/extraction at each individual metal/semiconductor interface. This is key for applications in devices such as solar cells, light-emitting transistors, photodetectors, inverters, and sensors. Here, we describe a new method for the asymmetric functionalization of gold electrodes with different thiolated molecules as a viable route to obtain two electrodes with drastically different work function values.
View Article and Find Full Text PDFHigh fatigue resistance, bistability, and drastic property changes among isomers allow efficient modulation of the current output of organic thin-film transistors (OTFTs) to be obtained by a photogating of the charge-injection mechanism.
View Article and Find Full Text PDFMultifunctional materials can be engineered by combining multiple chemical components, each conferring a well-defined function to the ensemble. Graphene is at the centre of an ever-growing research effort due to its combination of unique properties. Here we show that the large conformational change associated with the trans-cis photochemical isomerization of alkyl-substituted azobenzenes can be used to improve the efficiency of liquid-phase exfoliation of graphite, with the photochromic molecules acting as dispersion-stabilizing agents.
View Article and Find Full Text PDFResponsive polymer materials can change their properties when subjected to external stimuli. In this work, thin films of thermotropic poly(metha)acrylate/azobenzene polymers are explored as active layer in light-programmable, electrically readable memories. The memory effect is based on the reversible modifications of the film morphology induced by the photoisomerization of azobenzene mesogenic groups.
View Article and Find Full Text PDFHere we describe a strategy to fabricate multifunctional graphene-polymer hybrid thin-film transistors (PG-TFT) whose transport properties are tunable by varying the deposition conditions of liquid-phase exfoliated graphene (LPE-G) dispersions onto a dielectric surface and via thermal annealing post-treatments. In particular, the ionization energy (IE) of the LPE-G drop-cast on SiO2 can be finely adjusted prior to polymer deposition via thermal annealing in air environment, exhibiting values gradually changing from 4.8 eV up to 5.
View Article and Find Full Text PDFWe describe the effect of blending poly(3-hexylthiophene) (P3HT) with Au nanoparticles (AuNPs) on the performance of organic thin-film transistors. To this end we have used AuNPs of two different sizes coated with chemisorbed SAMs of oligophenyl-thiols possessing increasing lengths. The electrical characteristics of the hybrid materials revealed changes in the field-effect mobility depending primarily on the AuNP size, as a result of the variable energy level of the coated metallic nanocluster and by the degree of modification of the P3HT crystalline structure.
View Article and Find Full Text PDF