Improving analytical precision is a major goal in quantitative differential proteomics as high precision ensures low numbers of outliers, a source of false positives with regard to quantification. In addition, higher precision increases statistical power, i.e.
View Article and Find Full Text PDFPeptidomic analysis using Differential Peptide Display (DPD) of human peripheral blood mononuclear cells (PBMC) mock-infected or persistently infected by Chlamydia trachomatis (CT) revealed 10 peptides, expressed upon CT infection. Analysis of these 10 candidates by tandem mass spectrometry enabled the determination of seven candidates as fragments from the precursors (I) ferritin heavy chain subunit, (II) HLA class II histocompatibility antigen, (III) vimentin, (IV) indoleamine 2,3-dioxygenase, (V and VI) pre-B cell enhancing factor (PBEF), and (VII) Interleukin-8 (CXCL8). The identified candidates proved the presence of anti-bacterial and immunologically active monocytic proteins after CT infection.
View Article and Find Full Text PDFComb Chem High Throughput Screen
December 2005
During the course of biosynthesis, processing and degradation of a peptide, many structurally related intermediate peptide products are generated. Human body fluids and tissues contain several thousand peptides that can be profiled by reversed-phase chromatography and subsequent MALDI-ToF-mass spectrometry. Correlation-Associated Peptide Networks (CAN) efficiently detect structural and biological relations of peptides, based on statistical analysis of peptide concentrations.
View Article and Find Full Text PDFThe human Plasma Proteome Project pilot phase aims to analyze serum and plasma specimens to elucidate specimen characteristics by various proteomic techniques to ensure sufficient sample quality for the HUPO main phase. We used our proprietary peptidomics technologies to analyze the samples distributed by HUPO. Peptidomics summarizes technologies for visualization, quantitation, and identification of the low-molecular-weight proteome (<15 kDa), the "peptidome.
View Article and Find Full Text PDFProfiling of peptides and small proteins from either human body fluids or tissues by chromatography and subsequent mass spectrometry reveals several thousand individual peptide signals per sample. Any peptide is an intermediate in the course of biosynthesis, post-translational modification (PTM), proteolytic processing and degradation. Changes in the concentration of one peptide often affects the concentration of the other, hence a challenge consists in the development of suitable tools to turn this large amount of data into biologically relevant information.
View Article and Find Full Text PDFRecent work on protein and peptide biomarker patterns revealed the difficulties in identifying their molecular components, which is indispensable for validation of the biological context. Cerebrospinal fluid and brain tissue are used as sources to discover new biomarkers, e.g.
View Article and Find Full Text PDFBackground: The Val34Leu mutation in the activation peptide of factor XIII (FXIIIA) correlates with a lower incidence of myocardial infarction and ischemic stroke but an increased risk for hemorrhagic stroke. We describe mass spectrometric detection of the activation peptide variants in human serum.
Methods: We used differential peptide display (DPD) to compare comprehensive peptide maps from pairs of serum samples from healthy volunteers.