Bio-based polyamide 10.10 (PA 10.10) has excellent properties compared to other bio-based polymers such as polylactic acid (PLA) or polyhydroxyalkanoates (PHAs) and is therefore used in more technical applications where higher strength is required.
View Article and Find Full Text PDFNew stable states of liquid crystal 8CB could be induced by nonlinear shear conditions and observed by a newly developed rheology/X-ray scattering setup using synchrotron X-ray radiation. Nonlinear oscillatory shear created a distorted sixth order orientational structure. Even when oscillatory shear is switched off, the induced structure remains stable and can be removed only by heating the system into the isotropic state.
View Article and Find Full Text PDFThe voltage-dependent anion channel (VDAC), also known as mitochondrial porin, is the most abundant protein in the mitochondrial outer membrane (MOM). VDAC is the channel known to guide the metabolic flux across the MOM and plays a key role in mitochondrially induced apoptosis. Here, we present the 3D structure of human VDAC1, which was solved conjointly by NMR spectroscopy and x-ray crystallography.
View Article and Find Full Text PDFJ Bioenerg Biomembr
June 2008
The voltage dependent anion-channel, VDAC, is the major constitutive protein of the outer membrane of mitochondria. Functionally, VDAC is involved in the exchange of small metabolites over the mitochondrial outer membrane and supports enzymes of the cytoplasm with energy precursors i.e.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
July 2008
The major channel by which metabolites can pass through the outer mitochondrial membrane is formed by the voltage-dependent anion-channel (VDAC) family. Functionally, VDAC is involved in the limited exchange of ATP, ADP and small hydrophilic molecules across the outer membrane. Moreover, there is compelling evidence that VDAC isoforms in mammals may act in the cross-talk between mitochondria and the cytoplasm by direct interaction with enzymes involved in energy metabolism and proteins involved in mitochondrial-induced apoptosis.
View Article and Find Full Text PDFThe voltage-dependent anion channel (VDAC) is the major protein found in the outer membrane of mitochondria. The channel is responsible for the exchange of ATP/ADP and the translocation of ions and other small metabolites over the membrane. In order to obtain large amounts of pure and suitably folded human VDAC for functional and structural studies, the genes of the human isoforms I and II (HVDAC1 and HVDAC2) were cloned in Escherichia coli.
View Article and Find Full Text PDFSpontaneous membrane insertion and folding of beta-barrel membrane proteins from an unfolded state into lipid bilayers has been shown previously only for few outer membrane proteins of Gram-negative bacteria. Here we investigated membrane insertion and folding of a human membrane protein, the isoform 1 of the voltage-dependent anion-selective channel (hVDAC1) of mitochondrial outer membranes. Two classes of transmembrane proteins with either alpha-helical or beta-barrel membrane domains are known from the solved high-resolution structures.
View Article and Find Full Text PDFIn anaerobic microorganisms employing the acetyl-CoA pathway, acetyl-CoA synthase (ACS) and CO dehydrogenase (CODH) form a complex (ACS/CODH) that catalyzes the synthesis of acetyl-CoA from CO, a methyl group, and CoA. Previously, a [4Fe-4S] cubane bridged to a copper-nickel binuclear site (active site cluster A of the ACS component) was identified in the ACS(Mt)/CODH(Mt) from Moorella thermoacetica whereas another study revealed a nickel-nickel site in the open form of ACS(Mt), and a zink-nickel site in the closed form. The ACS(Ch) of the hydrogenogenic bacterium Carboxydothermus hydrogenoformans was found to exist as an 82.
View Article and Find Full Text PDF