Progress in understanding tumor stromal biology has been constrained in part because cancer-associated fibroblasts (CAF) are a heterogeneous population with limited cell-type-specific protein markers. Using RNA expression profiling, we identified the membrane protein leucine-rich repeat containing 15 (LRRC15) as highly expressed in multiple solid tumor indications with limited normal tissue expression. LRRC15 was expressed on stromal fibroblasts in many solid tumors (e.
View Article and Find Full Text PDFImproving the congruity of preclinical models with cancer as it is manifested in humans is a potential way to mitigate the high attrition rate of new cancer therapies in the clinic. In this regard, three-dimensional (3D) tumor cultures in vitro have recently regained interest as they have been acclaimed to have higher similarity to tumors in vivo than to cells grown in monolayers (2D). To identify cancer functions that are active in 3D rather than in 2D cultures, we compared the transcriptional profiles (TPs) of two non-small cell lung carcinoma cell lines, NCI-H1650 and EBC-1 grown in both conditions to the TP of xenografted tumors.
View Article and Find Full Text PDFPharmacol Res Perspect
October 2015
The Bcl-2 family inhibitors venetoclax and navitoclax demonstrated potent antitumor activity in chronic lymphocytic leukemia patients, notably in reducing marrow load and adenopathy. Subsequent trials with venetoclax have been initiated in non-Hodgkin's lymphoma and multiple myeloma patients. Traditional preclinical models fall short either in faithfully recapitulating disease progression within such compartments or in allowing the direct longitudinal analysis of systemic disease.
View Article and Find Full Text PDFMany established cancer therapies involve DNA-damaging chemotherapy or radiotherapy. Gain of DNA repair capacity of the tumor represents a common mechanism used by cancer cells to survive DNA-damaging therapy. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that is activated by DNA damage and plays a critical role in base excision repair.
View Article and Find Full Text PDFAkt (PKB) is a serine/threonine protein kinase that plays an important role in the transduction of signals affecting apoptosis, cell proliferation and survival. The Akt gene is frequently hyperactivated in tumors and has been shown to be amplified in a number of types of human cancers. Furthermore, Akt activity is elevated in cell lines with the mutated PTEN tumor suppressor gene.
View Article and Find Full Text PDFAnticancer Agents Med Chem
November 2007
The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to the points of cell contact with the extracellular matrix, called focal adhesions. FAK is involved in several cellular processes including invasion, motility, proliferation and apoptosis. In in vivo animal studies, FAK has been shown to contribute to tumor development and malignancy.
View Article and Find Full Text PDFPurpose: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888.
Experimental Design: In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation.
Akt is a serine/threonine kinase that transduces survival signals from survival/growth factors. Deregulation and signal imbalance in cancer cells make them prone to apoptosis. Upregulation or activation of Akt to aid the survival of cancer cells is a common theme in human malignancies.
View Article and Find Full Text PDFThe Akt kinases are central nodes in signal transduction pathways that are important for cellular transformation and tumor progression. We report the development of a series of potent and selective indazole-pyridine based Akt inhibitors. These compounds, exemplified by A-443654 (K(i) = 160 pmol/L versus Akt1), inhibit Akt-dependent signal transduction in cells and in vivo in a dose-responsive manner.
View Article and Find Full Text PDFThe focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to the points of cell contact with the extracellular matrix, called focal adhesions. Many factors induce tyrosine phosphorylation of FAK including growth factors, neuropeptides and integrin-dependent adhesion to the extracellular matrix. FAK has been implicated in several cellular processes such as invasion, motility, proliferation and apoptosis.
View Article and Find Full Text PDFSurvivin, one of the most tumor-specific gene products, has been implicated in both anti-apoptosis and cytokinesis. However, the mechanism by which survivin regulates these two different processes is still elusive. Here, we show that survivin binds to the catalytic domain of Aurora-B.
View Article and Find Full Text PDFThe BGL2 gene encodes a unique 1,3-beta-glucosyltransferase (Bgl2p) present in the cell wall of Candida albicans and other fungi. Although believed to be involved in cell wall assembly, disruption of the gene in saccharomyces cerevisiae showed no apparent phenotype. We performed sequential disruptions of the BGL2 loci in a homozygous ura3 clinical isolate of C.
View Article and Find Full Text PDF