Publications by authors named "Thomas McNerney"

Recent advances in the productivity of industrial mammalian cell culture processes have resulted in part in increased cell density. This increase and the associated increase in cellular debris are known to challenge harvest operations, however this understanding is limited and largely qualitative. Part of the issue arises from the heterogeneous size and composition of cellular debris, which makes harvest feed stream extremely difficult to characterize.

View Article and Find Full Text PDF

High titer (>10 g/L) monoclonal antibody (mAb) cell culture processes are typically achieved by maintaining high viable cell densities over longer culture durations. A corresponding increase in the solids and sub-micron cellular debris particle levels are also observed. This higher burden of solids (≥15%) and sub-micron particles typically exceeds the capabilities of a continuous centrifuge to effectively remove the solids without a substantial loss of product and/or the capacity of the harvest filtration train (depth filter followed by membrane filter) used to clarify the centrate.

View Article and Find Full Text PDF

This article describes the use of underivatized silica gel as a preparative stationary phase for process purification of proteins. Although silica has been frequently used as a stationary phase backbone matrix, direct adsorption of proteins on underivatized silica has not been widely exploited for industrial applications. In this study an effort was made to fundamentally understand the interaction mechanisms between a protein and silica surface by using several proteins with a wide range of isoelectric points (pIs) and surface hydrophobicity.

View Article and Find Full Text PDF

Unexpected transient changes in effluent pH can occur during ion-exchange chromatography. Such changes can occur even if a column that is equilibrated with a buffer receives another solution in the same buffer and of the same pH but of a different salt concentration. An attempt is made to understand the basis for this phenomenon and apply it to the process purification of a recombinant protein on a strong cation-exchange resin.

View Article and Find Full Text PDF