Publications by authors named "Thomas McDonagh"

Combining multiple medications in a single dosage form has emerged as an important strategy for treating complex diseases and could help tackle the growing issue of polypharmacy. In this study we investigated the suitability of different dual-drug designs for achieving simultaneous, delayed and pulsatile drug release regimes using two model formulations: an immediate release erodible system of Eudragit E PO loaded with paracetamol; and an erodible swellable system of Soluplus loaded with felodipine. Both binary formulations, despite not fused deposition modelling (FDM) printable, were successfully printed using a thermal droplet-based 3D printing method, Arburg Plastic Freeforming (APF), and exhibited good reproducibility.

View Article and Find Full Text PDF

A range of 3D printing methods have been investigated intensively in the literature for manufacturing personalised solid dosage forms, with infill density commonly used to control release rates. However, there is limited mechanistic understanding of the impacts of infill adjustments on in vitro performance when printing tablets of constant dose. In this study, the effects and interplay of infill pattern and tablet geometry scaling on dose and drug release performance were investigated.

View Article and Find Full Text PDF

Purpose: To develop a new direct granule fed 3D printing method for manufacturing pharmaceutical solid dosage forms with porous structures using a thermal droplet deposition technology.

Methods: Eudragit® E PO was used as the model polymer, which is well-known to be not FDM printable without additives. Wet granulation was used to produce drug loaded granules as the feedstock.

View Article and Find Full Text PDF
Article Synopsis
  • 3D printing can create porous pharmaceutical tablets on-demand to control drug release rates, yet the specific effects of porosity on swellable and erodible forms remain under-researched.
  • The study utilized a model formulation and a novel 3D printing method called Arburg plastic free-forming (APF) to analyze how varying infill percentages affected the drug release of the tablets in different pH environments.
  • Results showed that as tablet infill decreased, the drug release rates increased, highlighting the intricate relationship between porosity, swelling, and erosion in drug delivery systems.
View Article and Find Full Text PDF

Biologics are making up an increasing proportion of the global drug discovery pipeline. Supporting the expansion of biologics drug discovery requires higher throughput techniques for the expression, purification and characterization of both therapeutic candidates and reagents. Here we describe the programming and development of a novel ÄKTA™ instrument configuration that enables automated parallel and multistep chromatography over a range of scales.

View Article and Find Full Text PDF

Rationale: Atrial fibrillation (AF) is encountered rarely in pregnancy. Management of maternal AF is challenging as it poses a threat to both maternal and fetal well-being.

Patient Concerns: We report a case of a 35 weeks pregnant woman who presented in emergency with sudden-onset palpitations and mild shortness of breath with no personal/family history of cardiac diseases.

View Article and Find Full Text PDF

Long-acting antiretrovirals could provide a useful alternative to daily oral therapy for HIV-1-infected individuals. Building on a bi-specific molecule with adnectins targeting CD4 and gp41, a potential long-acting biologic, GSK3732394, was developed with three independent and synergistic modes of HIV entry inhibition that potentially could be self-administered as a long-acting subcutaneous injection. Starting with the bi-specific inhibitor, an α-helical peptide inhibitor was optimized as a linked molecule to the anti-gp41 adnectin, with each separate inhibitor exhibiting at least single-digit nanomolar (or lower) potency and a broad spectrum.

View Article and Find Full Text PDF

The N17 region of gp41 in HIV-1 is the most conserved region in gp160. mRNA selection technologies were used to identify an adnectin that binds to this region and inhibits gp41-induced membrane fusion. Additional selection conditions were used to optimize the adnectin to greater potency (5.

View Article and Find Full Text PDF

Purpose Of Review: The review highlights the shift from prescribed length of stay (LOS) to mother-infant dyad readiness as the basis for making discharge decisions for healthy term newborns. We describe the components of readiness that should be considered in making the decision, focusing on infant clinical readiness, and maternal and familial readiness.

Recent Findings: Although the Newborns' and Mothers' Health Protection Act of 1996 aimed to protect infants and mothers by establishing a minimum LOS, the American Academy of Pediatrics 2015 policy on newborn discharge acknowledges the shift from LOS-based to readiness-based discharge decision-making.

View Article and Find Full Text PDF

A novel fibronectin-based protein (Adnectin) HIV-1 inhibitor was generated using selection. This inhibitor binds to human CD4 with a high affinity (3.9 nM) and inhibits viral entry at a step after CD4 engagement and preceding membrane fusion.

View Article and Find Full Text PDF

Cellular levels of inhibitor of apoptosis (IAP) proteins are elevated in multiple human cancers and their activities often play a part in promoting cancer cell survival by blocking apoptotic pathways, controlling signal transduction pathways and contributing to resistance. These proteins function through interactions of their BIR (baculoviral IAP repeat) protein domains with pathway components and these interactions are endogenously antagonized by Smac/Diablo (second mitochondrial activator of caspases/direct IAP binding protein with low isoelectric point). This report describes development of synthetic smac mimetics (SM) and compares their binding, antiproliferative and anti-tumor activities.

View Article and Find Full Text PDF
Article Synopsis
  • Animal ears, such as those of locusts, have evolved to effectively capture sound and analyze frequencies.
  • The locust's tympanum transforms incoming sound waves into mechanical vibrations that prioritize certain frequencies, similar to how a tsunami focuses energy.
  • Research using finite element analysis identifies that the locust tympanum's unique thickness and tension properties are crucial for achieving this frequency-dependent sound localization.
View Article and Find Full Text PDF

Ghrelin influences a variety of metabolic functions through a direct action at its receptor, the GhrR (GhrR-1a). Ghrelin knockout (KO) and GhrR KO mice are resistant to the negative effects of high-fat diet (HFD) feeding. We have generated several classes of small-molecule GhrR antagonists and evaluated whether pharmacologic blockade of ghrelin signaling can recapitulate the phenotype of ghrelin/GhrR KO mice.

View Article and Find Full Text PDF

Background: SRT1720 and SRT2183 were described recently as activators of the NAD+-dependent deacetylase, SIRT1. These molecules enhanced metabolic function when administered to rodents at doses of 100-500 mg/kg/day, purportedly by activating SIRT1 enzymatic activity in various tissues; however, considerable controversy surrounds these claims.

Results: We find that these molecules do not activate SIRT1 deacetylase activity when tested in a variety of enzymatic assay formats and conditions.

View Article and Find Full Text PDF

To define the relationship between the respiratory quotient (RQ) and energy intake (EI) and to determine the impact of spontaneous locomotor activity (LMA) in the development of diet-induced obesity (DIO), we fed C57BL/6 mice a high-fat diet (HFD) for either 4 days or 17 wk and analyzed them using indirect calorimetry. Importantly, changes in body mass during calorimetry (DeltaM(b)) significantly covaried with RQ and EI; adjusting the data for DeltaM(b) permitted an analysis of the energy-balanced state. The 24-h RQ strongly predicted 24-h EI, and the slope of this relationship was diet dependent (HFD or chow) but independent of the HFD feeding period.

View Article and Find Full Text PDF

Stimulation of the ghrelin receptor (GhrR) by ghrelin results in a variety of metabolic changes including increased food intake, fat storage and insulin resistance. Loss of ghrelin signaling is protective against diet-induced obesity, suggesting that ghrelin plays a significant homeostatic role in conditions of metabolic stress. We examined glycemic control in GhrR -/- mice fed a high-fat diet, and used indirect calorimetry to assess fuel substrate usage and energy expenditure.

View Article and Find Full Text PDF

Aggrecanases are now believed to be the principal proteinases responsible for aggrecan degradation in osteoarthritis. Given their potential as a drug target, we solved crystal structures of the two most active human aggrecanase isoforms, ADAMTS4 and ADAMTS5, each in complex with bound inhibitor and one wherein the enzyme is in apo form. These structures show that the unliganded and inhibitor-bound enzymes exhibit two essentially different catalytic-site configurations: an autoinhibited, nonbinding, closed form and an open, binding form.

View Article and Find Full Text PDF

Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals.

View Article and Find Full Text PDF

Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. In this report, we used EX-527, a novel, potent, and specific small-molecule inhibitor of SIRT1 catalytic activity to examine the role of SIRT1 in p53 acetylation and cell survival after DNA damage. Treatment with EX-527 dramatically increased acetylation at lysine 382 of p53 after different types of DNA damage in primary human mammary epithelial cells and several cell lines.

View Article and Find Full Text PDF

High-throughput screening against the human sirtuin SIRT1 led to the discovery of a series of indoles as potent inhibitors that are selective for SIRT1 over other deacetylases and NAD-processing enzymes. The most potent compounds described herein inhibit SIRT1 with IC50 values of 60-100 nM, representing a 500-fold improvement over previously reported SIRT inhibitors. Preparation of enantiomerically pure indole derivatives allowed for their characterization in vitro and in vivo.

View Article and Find Full Text PDF

We describe a microplate-based assay for NAD-dependent Class III histone deacetylases (also known as SIRTs) that measures the enzyme-catalyzed release of nicotinamide from radiolabeled NAD, using a boronic acid resin to selectively capture the NAD. This method avoids the need for fluorogenic or radiolabeled peptides or separation of the reaction products using solvent extraction. The protocol reported here is rapid and uses commercially available materials.

View Article and Find Full Text PDF

Resveratrol, a small molecule found in red wine, is reported to slow aging in simple eukaryotes and has been suggested as a potential calorie restriction mimetic. Resveratrol has also been reported to act as a sirtuin activator, and this property has been proposed to account for its anti-aging effects. We show here that resveratrol is a substrate-specific activator of yeast Sir2 and human SirT1.

View Article and Find Full Text PDF

SIR2 is a key regulator of the aging process in many model organisms. The human ortholog SIRT1 plays a pivotal role in the regulation of cellular differentiation, metabolism, cell cycle, and apoptosis. SIRT1 is an NAD(+)-dependent deacetylase, and its enzymatic activity may be regulated by cellular energy.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how platelets stick to blood vessel injuries, focusing on the interaction between GpIbalpha (a platelet receptor) and the A1 domain of von Willebrand factor (VWF) under high shear conditions.
  • A 2.6-A crystal structure reveals differences in the binding interfaces of wild-type and mutant complexes, particularly highlighting how mutations can alter binding strength.
  • These findings enhance our understanding of how specific mutations related to von Willebrand Disease affect platelet adhesion, which could have implications for treating related blood disorders.
View Article and Find Full Text PDF