Nanocarrier drug delivery systems are attractive options for targeted delivery of survival- and regeneration-enhancing therapeutics to neurons damaged by degenerative or traumatic central nervous system (CNS) lesions. Functional groups on nanocarrier surfaces allow derivatization with molecules to target specific cells but may affect cellular interactions and nanocarrier uptake. We synthesized differently sized -COOH and -NH surface functionalized polymeric nanocarriers (SFNCs) by emulsion copolymerization and assessed uptake by different cell types in mixed cortical cultures.
View Article and Find Full Text PDFThe use of high intensity chemo-radiotherapies has demonstrated only modest improvement in the treatment of high-risk neuroblastomas. Moreover, undesirable drug specific and radiation therapy-incurred side effects enhance the risk of developing into a second cancer at a later stage. In this study, a safer and alternative multimodal therapeutic strategy involving simultaneous optical and oscillating (AC) magnetic field stimulation of a multifunctional nanocarrier system has successfully been implemented to guide neuroblastoma cell destruction.
View Article and Find Full Text PDF