Publications by authors named "Thomas M Turner"

CaSO /CaPO -TCP bone graft substitute has been shown to be effective for treatment of bone lesion defects, but its mechanical, histological, and radiographic characteristics have not been studied in direct comparison with a conventional treatment such as cancellous allograft bone. Thirteen canines had a critical-size axial defect created bilaterally into the proximal humerus. CaSO /CaPO -TCP bone graft substitute (PRO-DENSE™, Wright Medical Technology) was injected into the defect in one humerus, and an equal volume of freeze-dried cancellous allograft bone chips was placed in the contralateral defect.

View Article and Find Full Text PDF

Hip arthroplasty femoral stems coated with Ti6Al4V beads were treated by anodic oxidation in H PO for enhanced bioactivity and were studied in a 6-month canine model to determine the effects of the treated surface on the ingrowth of bone and soft tissues. The area fractions of bone, marrow, and fibrous tissue in the porous coating of seven treated and seven untreated control implants were determined using histomorphological techniques. The area fraction of bone within the porous coating was greater for anodic oxide treated (23.

View Article and Find Full Text PDF

A female white-naped crane (Grus vipio) was presented with an open, oblique fracture of the distal right tarsometatarsus and concomitant vascular and nerve damage. Conventional fracture fixation repairs failed, which led to implantation of a custom titanium limb prosthesis. After subsequent revisions with 2 different prosthetic devices, limb function was ultimately restored but a later yolk embolism caused a circulatory compromise in the opposite leg, which necessitated euthanasia.

View Article and Find Full Text PDF

Background Context: Vertebroplasty was developed to mechanically reinforce weakened vertebral bodies. Polymethylmethacrylate (PMMA) bone cement has been most commonly used but carries risks of thermal injury and respiratory and cardiovascular complications. Calcium phosphate (CaP) offers the potential for biological resorption and replacement with new bone, restoring vertebral body mass and height.

View Article and Find Full Text PDF

The procedure of using of porous titanium granules for cementless fixation of a hip replacement femoral stem was studied in a hemiarthroplasty model in 10 canines for 6 months. A vibrating instrument was used to facilitate both the delivery and distribution of the irregularly shaped porous titanium granules into the femoral canal as well as the subsequent insertion of a titanium alloy stem into the intramedullary bed of granules. Histological examination revealed lamellar bone formation through the mantle of porous titanium granules in continuity with the surrounding cortex resulting in the formation of an integrated mantle of bone and titanium granulate around the prosthesis.

View Article and Find Full Text PDF

Calcium phosphates (CaPO4) and faster-resorbing calcium sulfate (CaSO4) are successfully employed as synthetic bone grafts for treatment of contained defects. We used a canine critical-sized bone defect model to study an injectable CaSO4/CaPO4 composite graft that incorporated a matrix of CaSO4 and dicalcium phosphate dihydrate into which beta-tricalcium phosphate granules were distributed. The area fraction, ultimate compressive stress, and elastic modulus of restored bone and the relative rates of material resorption were compared between the CaSO4/CaPO4 composite graft and pure CaSO4 pellets and to normal canine bone.

View Article and Find Full Text PDF

Titanium implants are an alternative to stainless steel implants for internal fixation after fracture. The advantages of titanium include decreased implant stiffness, increased bio-compatibility, and diminished stress shielding. However, titanium has been implicated in tendon irritation and adhesions when used in the hand and wrist.

View Article and Find Full Text PDF

The purpose of this study was to determine if acetabular articular cartilage damage occurs in the presence or absence of changes in subchondral plate thickness or porosity and trabecular bone architecture after hip hemiarthroplasty. Eight canines were sacrificed 6 months after receiving unilateral hemiarthroplasties in which a cobalt chrome alloy femoral head was used. The acetabular cartilage, subchondral plate, and trabecular bone were quantitatively evaluated.

View Article and Find Full Text PDF

We asked if tobramycin-loaded calcium sulfate pellets could be used to maintain high local site antibiotic concentrations for an extended period with minimal systemic levels and without adverse effects on vital organs. Calcium sulfate pellets loaded with 10% tobramycin were implanted in contained medullary defects in the proximal humeri of canines. The number of pellets implanted was calculated to yield an equivalent human maximum prescribed dose, and 1.

View Article and Find Full Text PDF

The addition of a plasticizer to synthetic bone graft substitutes can improve handling characteristics, injectability, and the ability to uniformly fill defects. Restoration of large medullary bone defects using an injectable calcium sulfate-based putty using hydroxypropylmethylcellose as the plasticizer was compared to conventional calcium sulfate paste in a canine model. Beginning 2 weeks following implantation, serial clinical and specimen radiographs demonstrated a similar progressive resorption of the implanted materials and replacement with new bone for both the putty and paste forms of calcium sulfate.

View Article and Find Full Text PDF

A new, modified calcium sulfate has been developed with a different crystalline structure and a compressive strength similar to many calcium phosphate materials, but with a resorption profile only slightly slower than conventional surgical-grade calcium sulfate. A canine bilateral defect model was used to compare restoration of defects treated with the modified calcium sulfate compared to treatment using conventional calcium sulfate pellets after 6, 13, and 26 weeks. The modified calcium sulfate pellets were as effective as conventional calcium sulfate pellets with regard to the area fraction and compressive strength of newly formed bone in the treated bone defects.

View Article and Find Full Text PDF

Three preclinical models were used to evaluate GraftJacket Acellular Periosteum Replacement Scaffold (Wright Medical Technology, Inc, Arlington, Tenn). The studies assessed the ability of the acellular dermal matrix to repopulate with cells, revascularize, provide a protected environment for bone defect restoration, and minimize fibrous tissue infiltration. An athymic nude rat muscle implantation study demonstrated a steady increase in cellular repopulation through days 2-21.

View Article and Find Full Text PDF

Calcium sulfate (OsteoSet, Wright Medical Technology, Inc, Arlington, Tenn) and calcium sulfate/demineralized bone matrix (DBM) pellets (OsteoSet DBM, Wright Medical Technology, Inc) have been evaluated preclinically in a bilateral medullary defect model of a canine humerus. In this model, both short (6 week) and long (26 week) time points have been evaluated. An analysis of bone response to the pellets was conducted using radiological, histological, mechanical, and quantification techniques.

View Article and Find Full Text PDF

New bone formation and resorption of a calcium sulfate bone graft substitute implanted in five canines were evaluated in this study. Healing was assessed radiographically at 2, 6, and 13 weeks. At 13 weeks, the dogs were sacrificed, and the humeri were retrieved.

View Article and Find Full Text PDF

Three formulations of injectable calcium sulfate-based putties containing demineralized bone matrix (DBM), 50% DBM/50% cancellous bone (CB) chips, and 30% DBM/70% CB were studied in canines. Four humeral defects per dog were implanted with one of each of the putty formulations while the fourth defect was left untreated. After 6 weeks, the dogs were euthanized.

View Article and Find Full Text PDF

An injectable, hard-setting, calcium sulfate-based putty containing demineralized bone matrix particles (AlloMatrix II, Wright Medical Technology, Inc, Arlington, Tenn) was compared to autogenous cancellous bone graft to evaluate healing in a canine model. Area fraction of new bone, modulus of elasticity, and compressive strength of new bone were evaluated, as was radiographic and histologic healing. Bilateral defects were created in the proximal humeri, and each defect was implanted with either the putty or autogenous bone according to a randomized schedule.

View Article and Find Full Text PDF