Many ATP-binding cassette transporters are regulated by phosphorylation on long and disordered loops which presents a challenge to visualize with structural methods. We have trapped an activated state of the regulatory domain (R-domain) of yeast cadmium factor 1 (Ycf1) by enzymatically enriching the phosphorylated state. A 3.
View Article and Find Full Text PDFThe human Solute Carrier (SLC) family member, monocarboxylate transporter 1 (MCT1), transports lactic and pyruvic acid across biological membranes to regulate cellular pH and metabolism. Proper trafficking of MCT1 from the endoplasmic reticulum to the plasma membrane hinges on its interactions with the membrane-bound chaperone protein, CD147. Here, using AlphaFold2 modeling and copurification, we show how a conserved signature motif located in the flexible N-terminus of MCT1 is a crucial region of interaction between MCT1 and the C-terminus of CD147.
View Article and Find Full Text PDFMany ATP-binding cassette (ABC) transporters are regulated by phosphorylation on long and disordered loops which present a challenge to visualize with structural methods. We have trapped an activated state of the regulatory domain (R-domain) of Yeast Cadmium Factor 1 (Ycf1) by enzymatically enriching the phosphorylated state. A 3.
View Article and Find Full Text PDFYeast Cadmium Factor 1 (Ycf1) sequesters glutathione and glutathione-heavy metal conjugates into yeast vacuoles as a cellular detoxification mechanism. Ycf1 belongs to the C subfamily of ATP Binding Cassette (ABC) transporters characterized by long flexible linkers, notably the regulatory domain (R-domain). R-domain phosphorylation is necessary for activity, whereas dephosphorylation induces autoinhibition through an undefined mechanism.
View Article and Find Full Text PDFTransporters from the ABCC family have an essential role in detoxifying electrophilic compounds including metals, drugs, and lipids, often through conjugation with glutathione complexes. The Yeast Cadmium Factor 1 (Ycf1) transports glutathione alone as well as glutathione conjugated to toxic heavy metals including Cd, Hg, and As. To understand the complicated selectivity and promiscuity of heavy metal substrate binding, we determined the cryo-EM structure of Ycf1 bound to the substrate, oxidized glutathione.
View Article and Find Full Text PDFCoccidioidomycosis is an endemic fungal infection that is reported in up to 20,000 persons per year and has an economic impact close to $1.5 billion. Natural infection virtually always confers protection from future exposure, and this suggests that a preventative vaccine strategy is likely to succeed.
View Article and Find Full Text PDFYeast Cadmium Factor 1 (Ycf1) sequesters heavy metals and glutathione into the vacuole to counter cell stress. Ycf1 belongs to the ATP binding cassette C-subfamily (ABCC) of transporters, many of which are regulated by phosphorylation on intrinsically-disordered domains. The regulatory mechanism of phosphorylation is still poorly understood.
View Article and Find Full Text PDFSubstrate efflux by ATP-binding cassette (ABC) transporters, which play a major role in multidrug resistance, entails the ATP-powered interconversion between transporter intermediates. Despite recent progress in structure elucidation, a number of intermediates have yet to be visualized and mechanistically interpreted. Here, we combine cryogenic-electron microscopy (cryo-EM), double electron-electron resonance spectroscopy and molecular dynamics simulations to profile a previously unobserved intermediate of BmrCD, a heterodimeric multidrug ABC exporter from Bacillus subtilis.
View Article and Find Full Text PDFThe ATP binding cassette (ABC) family of transporters moves small molecules (lipids, sugars, peptides, drugs, nutrients) across membranes in nearly all organisms. Transport activity requires conformational switching between inward-facing and outward-facing states driven by ATP-dependent dimerization of two nucleotide binding domains (NBDs). The mechanism that connects ATP binding and hydrolysis in the NBDs to conformational changes in a substrate binding site in the transmembrane domains (TMDs) is currently an outstanding question.
View Article and Find Full Text PDFBackground And Objectives: Glomerulopathies affect kidney glomeruli and can lead to end-stage renal disease if untreated. Clinical and experimental evidence have identified numerous (>20) genetic mutations in the mitochondrial coenzyme Q8B protein (COQ8B) primarily associated with nephrotic syndrome. Yet, little else is understood about COQ8B activity in renal pathogenesis and its role in mitochondrial dysfunction.
View Article and Find Full Text PDFQuinol:fumarate reductase (QFR) is an integral membrane protein and a member of the respiratory Complex II superfamily. Although the structure of Escherichia coli QFR was first reported almost twenty years ago, many open questions of catalysis remain. Here we report two new crystal forms of QFR, one grown from the lipidic cubic phase and one grown from dodecyl maltoside micelles.
View Article and Find Full Text PDFABC transporters form one of the largest protein superfamilies in all domains of life, catalyzing the movement of diverse substrates across membranes. In this key position, ABC transporters can mediate multidrug resistance in cancer therapy and their dysfunction is linked to various diseases. Here, we describe the 2.
View Article and Find Full Text PDFATP-binding cassette (ABC) transporters translocate substrates across cell membranes, using energy harnessed from ATP binding and hydrolysis at their nucleotide-binding domains. ABC exporters are present both in prokaryotes and eukaryotes, with examples implicated in multidrug resistance of pathogens and cancer cells, as well as in many human diseases. TmrAB is a heterodimeric ABC exporter from the thermophilic Gram-negative eubacterium Thermus thermophilus; it is homologous to various multidrug transporters and contains one degenerate site with a non-catalytic residue next to the Walker B motif.
View Article and Find Full Text PDFThis unit describes rapid and generally applicable methods to identify conditions that stabilize membrane proteins using temperature-based denaturation measurements as a proxy for target time-dependent stability. Recent developments with thiol-reactive dyes sensitive to the unmasking of cysteine residues upon protein unfolding have allowed for routine application of thermostability assays to systematically evaluate the stability of membrane protein preparations after various purification procedures. Test conditions can include different lipid cocktails, lipid-detergent micelles, pH, salts, osmolytes, and potential active-site ligands.
View Article and Find Full Text PDFBitopic integral membrane proteins with a single transmembrane helix play diverse roles in catalysis, cell signaling, and morphogenesis. Complete monospanning protein structures are needed to show how interaction between the transmembrane helix and catalytic domain might influence association with the membrane and function. We report crystal structures of full-length Saccharomyces cerevisiae lanosterol 14α-demethylase, a membrane monospanning cytochrome P450 of the CYP51 family that catalyzes the first postcyclization step in ergosterol biosynthesis and is inhibited by triazole drugs.
View Article and Find Full Text PDFRespiratory processes often use quinone oxidoreduction to generate a transmembrane proton gradient, making the 2H(+)/2e(-) quinone chemistry important for ATP synthesis. There are a variety of quinones used as electron carriers between bioenergetic proteins, and some respiratory proteins can functionally interact with more than one quinone type. In the case of complex II homologs, which couple quinone chemistry to the interconversion of succinate and fumarate, the redox potentials of the biologically available ubiquinone and menaquinone aid in driving the chemical reaction in one direction.
View Article and Find Full Text PDFGspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIbα. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB(BR)), both alone and in complex with a disaccharide precursor to sialyl-T antigen.
View Article and Find Full Text PDFComplex II superfamily members catalyze the kinetically difficult interconversion of succinate and fumarate. Due to the relative simplicity of complex II substrates and their similarity to other biologically abundant small molecules, substrate specificity presents a challenge in this system. In order to identify determinants for on-pathway catalysis, off-pathway catalysis, and enzyme inhibition, crystal structures of Escherichia coli menaquinol:fumarate reductase (QFR), a complex II superfamily member, were determined bound to the substrate, fumarate, and the inhibitors oxaloacetate, glutarate, and 3-nitropropionate.
View Article and Find Full Text PDFIn Escherichia coli, the complex II superfamily members succinate:ubiquinone oxidoreductase (SQR) and quinol:fumarate reductase (QFR) participate in aerobic and anaerobic respiration, respectively. Complex II enzymes catalyze succinate and fumarate interconversion at the interface of two domains of the soluble flavoprotein subunit, the FAD binding domain and the capping domain. An 11-amino acid loop in the capping domain (Thr-A234 to Thr-A244 in quinol:fumarate reductase) begins at the interdomain hinge and covers the active site.
View Article and Find Full Text PDFSuccinate and fumarate are four-carbon dicarboxylates that differ in the identity of their central bond (single or double). The oxidoreduction of these small molecules plays a central role in both aerobic and anaerobic respiration. During aerobic respiration, succinate is oxidized, donating two reducing equivalents, while in anaerobic respiration, fumarate is reduced, accepting two reducing equivalents.
View Article and Find Full Text PDF