Recently, V O nanowires have been synthesized as several different polymorphs, and as correlated bronzes with cations intercalated between the layers of edge- and corner- sharing VO octahedra. Unlike extended crystals, which tend to be plagued by substantial local variations in stoichiometry, nanowires of correlated bronzes exhibit precise charge ordering, thereby giving rise to pronounced electron correlation effects. These developments have greatly broadened the scope of research, and promise applications in several frontier electronic devices that make use of novel computing vectors.
View Article and Find Full Text PDFNitridophosphates have emerged as advanced materials due to their structural variability and broad technical applicability. Their binary parent compound P3 N5 , a polymeric network of corner- and edge-sharing PN4 tetrahedra with N and N sites, is a particularly interesting example. We present a study of the band gap and electronic structure of α-P3 N5 by using soft X-ray spectroscopy measurements and DFT calculations.
View Article and Find Full Text PDFNew V2O5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their defining structure-property relationships. We present a characterization of the band gap and electronic structure of nanowires of the novel ζ-phase and the orthorhombic α-phase of V2O5 using X-ray spectroscopy and density functional theory calculations.
View Article and Find Full Text PDF