Publications by authors named "Thomas M Ticich"

The ability to incorporate a dopant element into silicon nanocrystals (NC) and quantum dots (QD) is one of the key technical challenges for the use of these materials in a number of optoelectronic applications. Unlike doping of traditional bulk semiconductor materials, the location of the doping element can be either within the crystal lattice (c-doping), on the surface (s-doping) or within the surrounding matrix (m-doping). A review of the various synthetic strategies for doping silicon NCs and QDs is presented, concentrating on the efficacy of the synthetic routes, both in situ and post synthesis, with regard to the structural location of the dopant and the doping level.

View Article and Find Full Text PDF

Laser ablation has been used ex situ to create metal nanoparticles for introduction into a reactive pyrolysis flame. By prior synthesis of the metal nanoparticles, the effects of the reactive gases can be clearly separated from the pyrolysis chemistry of a solvent carrier, as when nebulized solutions are used. Moreover, varying reactivity issues associated with particle growth and size are bypassed.

View Article and Find Full Text PDF

Laser-induced incandescence applied to a heterogeneous, multielement reacting flow is characterized by temporally resolved emission spectra, time-resolved emission at selected detection wavelengths, and fluence dependence. Two-pulse laser measurements are used to further probe the effects of laser-induced changes on the optical signal. Laser fluences above 0.

View Article and Find Full Text PDF