Publications by authors named "Thomas M Stubbs"

Ageing is the accumulation of changes and decline of function of organisms over time. The concept and biomarkers of biological age have been established, notably DNA methylation-based clocks. The emergence of single-cell DNA methylation profiling methods opens the possibility of studying the biological age of individual cells.

View Article and Find Full Text PDF

Ageing is the gradual decline in organismal fitness that occurs over time leading to tissue dysfunction and disease. At the cellular level, ageing is associated with reduced function, altered gene expression and a perturbed epigenome. Recent work has demonstrated that the epigenome is already rejuvenated by the maturation phase of somatic cell reprogramming, which suggests full reprogramming is not required to reverse ageing of somatic cells.

View Article and Find Full Text PDF

Adult skeletal muscles are maintained during homeostasis and regenerated upon injury by muscle stem cells (MuSCs). A heterogeneity in self-renewal, differentiation and regeneration properties has been reported for MuSCs based on their anatomical location. Although MuSCs derived from extraocular muscles (EOM) have a higher regenerative capacity than those derived from limb muscles, the molecular determinants that govern these differences remain undefined.

View Article and Find Full Text PDF
Article Synopsis
  • Epigenetic clocks are tools that help scientists figure out how old our bodies are based on our DNA, and they are really good at this!
  • Researchers studied patients with certain genetic disorders to see how their biological age behaves, especially focusing on a condition called Sotos syndrome, which has a specific DNA mutation.
  • They found that a specific protein involved in DNA management speeds up aging in these patients, highlighting how this could help us understand why people age differently.
View Article and Find Full Text PDF
Article Synopsis
  • Certain diets and drugs can help mice live longer and healthier lives, and scientists are checking how this affects DNA changes in their bodies.
  • DNA methylation, which changes as mice age, can be influenced by these interventions, affecting important gene functions.
  • Researchers found specific changes in the DNA of mice that received different lifespan-extending treatments, suggesting these changes could help improve health as they get older.
View Article and Find Full Text PDF

Parallel single-cell sequencing protocols represent powerful methods for investigating regulatory relationships, including epigenome-transcriptome interactions. Here, we report a single-cell method for parallel chromatin accessibility, DNA methylation and transcriptome profiling. scNMT-seq (single-cell nucleosome, methylation and transcription sequencing) uses a GpC methyltransferase to label open chromatin followed by bisulfite and RNA sequencing.

View Article and Find Full Text PDF

DNA methylation is an important epigenetic modification in many species that is critical for development, and implicated in ageing and many complex diseases, such as cancer. Many cost-effective genome-wide analyses of DNA modifications rely on restriction enzymes capable of digesting genomic DNA at defined sequence motifs. There are hundreds of restriction enzyme families but few are used to date, because no tool is available for the systematic evaluation of restriction enzyme combinations that can enrich for certain sites of interest in a genome.

View Article and Find Full Text PDF

Background: DNA methylation changes at a discrete set of sites in the human genome are predictive of chronological and biological age. However, it is not known whether these changes are causative or a consequence of an underlying ageing process. It has also not been shown whether this epigenetic clock is unique to humans or conserved in the more experimentally tractable mouse.

View Article and Find Full Text PDF

Background: Dietary restriction (DR), a reduction in food intake without malnutrition, increases most aspects of health during aging and extends lifespan in diverse species, including rodents. However, the mechanisms by which DR interacts with the aging process to improve health in old age are poorly understood. DNA methylation could play an important role in mediating the effects of DR because it is sensitive to the effects of nutrition and can affect gene expression memory over time.

View Article and Find Full Text PDF

Global DNA demethylation is an integral part of reprogramming processes in vivo and in vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs) is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells.

View Article and Find Full Text PDF

Mouse embryonic stem cells are dynamic and heterogeneous. For example, rare cells cycle through a state characterized by decondensed chromatin and expression of transcripts, including the Zscan4 cluster and MERVL endogenous retrovirus, which are usually restricted to preimplantation embryos. Here, we further characterize the dynamics and consequences of this transient cell state.

View Article and Find Full Text PDF

The influenza A virus causes a highly contagious respiratory disease that significantly impacts our economy and health. Its replication and transcription is catalyzed by the viral RNA polymerase. This enzyme is also crucial for the virus, because it is involved in the adaptation of zoonotic strains.

View Article and Find Full Text PDF