This study reports for the first time, to the best of our knowledge, a real-time detection of ultralow-concentration chemical gases using fiber-optic technology, combining a miniaturized Fabry-Perot interferometer (FPI) with metal-organic frameworks (MOFs). The sensor consists of a short and thick-walled silica capillary segment spliced to a lead-in single-mode fiber (SMF), housing a tiny single crystal of HKUST-1 MOF, imparting chemoselectivity features. Ethanol and benzene gases were tested, resulting in a shift in the FPI interference signal.
View Article and Find Full Text PDFIn two configurations, a solid-state acousto-optic (AO) deflector or modulator is mounted in a 0.5 m monochromator for background correction with inductively coupled plasma atomic emission spectrometry (ICP-AES). A fused silica acousto-optic modulator (AOM) is used in the ultraviolet (UV) spectral region applications while a glass AO deflector (AOD) is used for the visible (VIS) region.
View Article and Find Full Text PDFA digital micromirror device (DMD) was tested to demonstrate its potential as a multiplexing device for the simultaneous detection of visible electromagnetic radiation. Using a Visual Basic program, four sections of the DMD were illuminated by a light source and each region of mirrors was modulated at different low frequencies (14.92, 20.
View Article and Find Full Text PDF