Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single nucleotide polymorphisms (SNPs).
View Article and Find Full Text PDFThe three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation, are invisible with such approaches.
View Article and Find Full Text PDFThe genome requires tight regulation in space and time to maintain viable cell functions. Advances in our understanding of the 3D genome show a complex hierarchical network of structures, involving compartments, membraneless bodies, topologically associating domains, lamina associated domains, protein- or RNA-mediated loops, enhancer-promoter contacts, and accessible chromatin regions, with chromatin state regulation through epigenetic and transcriptional mechanisms. Further technology developments are poised to increase genomic resolution, dissect single-cell behaviors, including in vivo dynamics of genome folding, and provide mechanistic perspectives that identify further 3D genome players by integrating multiomics information.
View Article and Find Full Text PDF