Background: Advances in technology have pushed the boundaries of neurosurgery. Surgeons play a major role in the neurosurgical field, but robotic systems challenge the current status quo. Robotic-assisted surgery has revolutionized several surgical fields, yet robotic-assisted neurosurgery is limited by available technology.
View Article and Find Full Text PDFIn vitro biomechanical investigations have become a routinely employed technique to explore new lumbar instrumentation. One of the most important advantages of such investigations is the low risk present when compared to clinical trials. However, the best use of any experimental data can be made when standard testing protocols are adopted by investigators, thus allowing comparisons among studies.
View Article and Find Full Text PDFMany successful attempts to increase pullout strength of pedicle screws in osteoporotic bone have been accompanied with an increased risk of catastrophic damage to the patient. To avoid this, a single-armed expansive pedicle screw was designed to increase fixation strength while controlling postfailure damage away from the nerves surrounding the pedicle. The screw was then subsequently tested in two severely osteoporotic models: one representing trabecular bone (with and without the presence of polymethylmethacrylate) and the other representing a combination of trabecular and cortical bone.
View Article and Find Full Text PDFOsteoporosis is a medical condition affecting men and women of different age groups and populations. The compromised bone quality caused by this disease represents an important challenge when a surgical procedure (e.g.
View Article and Find Full Text PDFBackground Context: Postoperative patient motions are difficult to directly control. Very slow quasistatic motions are intuitively believed to be safer for patients, compared with fast dynamic motions, because the torque on the spine is reduced. Therefore, the outcomes of varying axial rotation (AR) angular loading rate during in vitro testing could expand the understanding of the dynamic behavior and spine response.
View Article and Find Full Text PDFThe X-ray structure of previously studied dipeptidomimetic inhibitors bound in the active site of neuronal nitric oxide synthase (nNOS) presented a possibility for optimizing the strength of enzyme-inhibitor interactions as well as for enhancing bioavailability. These desirable properties may be attainable by replacement of the terminal amino group of the parent compounds (1-6) with a hydroxyl group (11-13, and 18-20). The hypothesized effect would be twofold: first, a change from a positively charged amino group to a neutral hydroxyl group might afford more drug-like character and blood-brain barrier permeability to the inhibitors; second, as suggested by docking studies, the incorporated hydroxyl group might displace an active site water molecule with which the terminal amino group of the original compounds indirectly hydrogen bonds.
View Article and Find Full Text PDF