Polychromatic UV irradiation is a common method of pathogen inactivation in the water treatment industry. To improve its disinfection efficacy, more information on the mechanisms of UV inactivation on microorganisms at wavelengths throughout the germicidal UV spectrum, particularly at below 240 nm, is necessary. This work examined UV inactivation of bacteriophage MS2, a common surrogate for enteric pathogens, as a function of wavelength.
View Article and Find Full Text PDFUltraviolet (UV) reactors used for disinfecting water and wastewater must be validated and monitored over time. The validation process requires understanding the photochemical properties of the pathogens of concern and the challenge microorganisms used to represent them. Specifically for polychromatic UV systems, the organisms' dose responses to UV light and their sensitivity across the UV spectrum must be known.
View Article and Find Full Text PDFAdenovirus is regarded as the most resistant pathogen to ultraviolet (UV) disinfection due to its demonstrated resistance to monochromatic, low-pressure (LP) UV irradiation at 254 nm. This resistance has resulted in high UV dose requirements for all viruses in regulations set by the United States Environmental Protection Agency. Polychromatic, medium-pressure (MP) UV irradiation has been shown to be much more effective than 254 nm, although the mechanisms of polychromatic UV inactivation are not completely understood.
View Article and Find Full Text PDFPrevious evaluations of the effect of ultraviolet (UV) light on oocysts have been limited to a single strain-the Iowa strain. This study investigated the response of five strains of to UV. A collimated beam apparatus was used to apply controlled doses of monochromatic (254 nm) UV to oocysts of the Iowa, Moredun, Texas A&M, Maine, and Glasgow strains.
View Article and Find Full Text PDF