Publications by authors named "Thomas M Hall"

Unlabelled: What determines how we move in the world? Motor neuroscience often focusses either on intrinsic rhythmical properties of motor circuits or extrinsic sensorimotor feedback loops. Here we show that the interplay of both intrinsic and extrinsic dynamics is required to explain the intermittency observed in continuous tracking movements. Using spatiotemporal perturbations in humans, we demonstrate that apparently discrete submovements made 2-3 times per second reflect constructive interference between motor errors and continuous feedback corrections that are filtered by intrinsic circuitry in the motor system.

View Article and Find Full Text PDF

The stability and frequency content of local field potentials (LFPs) offer key advantages for long-term, low-power neural interfaces. However, interpreting LFPs may require new signal processing techniques which should be informed by a scientific understanding of how these recordings arise from the coordinated activity of underlying neuronal populations. We review current approaches to decoding LFPs for brain-machine interface (BMI) applications, and suggest several directions for future research.

View Article and Find Full Text PDF

Motor cortical local field potentials (LFPs) have been successfully used to decode both kinematics and kinetics of arm movement. For future clinically viable prostheses, however, brain activity decoders will have to generalize well under a wide spectrum of behavioral conditions. This property has not yet been demonstrated clearly.

View Article and Find Full Text PDF

The long-term stability and low-frequency composition of local field potentials (LFPs) offer important advantages for robust and efficient neuroprostheses. However, cortical LFPs recorded by multi-electrode arrays are often assumed to contain only redundant information arising from the activity of large neuronal populations. Here we show that multichannel LFPs in monkey motor cortex each contain a slightly different mixture of distinctive slow potentials that accompany neuronal firing.

View Article and Find Full Text PDF

Upper-limb movements are often composed of regular submovements, and neural correlates of submovement frequencies between 1 and 4 Hz have been found in the motor cortex. The temporal profile of movements is usually assumed to be determined by extrinsic factors such as limb biomechanics and feedback delays, but another possibility is that an intrinsic rhythmicity contributes to low frequencies in behavior. We used multielectrode recordings in monkeys performing an isometric movement task to reveal cyclic activity in primary motor cortex locked to submovements, and a distinct oscillation in premotor cortex.

View Article and Find Full Text PDF

It has been suggested that "call-selective" neurons may play an important role in the encoding of vocalizations in primary auditory cortex (A1). For example, marmoset A1 neurons often respond more vigorously to natural than to time-reversed twitter calls, although the spectral energy distribution in the natural and time-reversed signals is the same. Neurons recorded in cat A1, in contrast, showed no such selectivity for natural marmoset calls.

View Article and Find Full Text PDF