Publications by authors named "Thomas M Davison"

The collapse of large impact craters requires a temporary reduction in the resistance to shear deformation of the target rocks. One explanation for such weakening is acoustic fluidization, where impact-generated pressure fluctuations temporarily and locally relieve overburden pressure facilitating slip. A model of acoustic fluidization widely used in numerical impact simulations is the Block model.

View Article and Find Full Text PDF

The 4.1-billion-year-old meteorite Allan Hills 84001 (ALH 84001) may preserve a magnetic record of the extinct martian dynamo. However, previous paleomagnetic studies have reported heterogeneous, nonunidirectional magnetization in the meteorite at submillimeter scales, calling into question whether it records a dynamo field.

View Article and Find Full Text PDF

The NASA Double Asteroid Redirection Test (DART) mission performed a kinetic impact on asteroid Dimorphos, the satellite of the binary asteroid (65803) Didymos, at 23:14 UTC on 26 September 2022 as a planetary defence test. DART was the first hypervelocity impact experiment on an asteroid at size and velocity scales relevant to planetary defence, intended to validate kinetic impact as a means of asteroid deflection. Here we report a determination of the momentum transferred to an asteroid by kinetic impact.

View Article and Find Full Text PDF

Anthropomorphic greenhouse gases are raising the temperature of the earth and threatening ecosystems. Since 1950 atmospheric carbon dioxide has increased 28%, while methane has increased 70%. Methane, over the first 20 years after release, has 80-times more warming potential as a greenhouse gas than carbon dioxide.

View Article and Find Full Text PDF

The ~70 km-diameter Yarrabubba impact structure in Western Australia is regarded as among Earth's oldest, but has hitherto lacked precise age constraints. Here we present U-Pb ages for impact-driven shock-recrystallised accessory minerals. Shock-recrystallised monazite yields a precise impact age of 2229 ± 5 Ma, coeval with shock-reset zircon.

View Article and Find Full Text PDF