Electrothermal micropumps apply an AC electric field to a conductive fluid within the range of 10 kHz-1 MHz to generate fluid flow. In this frequency range, coulombic forces dominate fluid interactions over opposing dielectric forces, resulting in high flow rates (~50-100 μm/s). To date, the electrothermal effect-using asymmetrical electrodes-has been tested only with single-phase and 2-phase actuation, while dielectrophoretic micropumps have shown improved flow rates with 3- and 4-phase actuation.
View Article and Find Full Text PDFOver 27 million individuals are affected every year worldwide with central nervous system (CNS) injuries. These injuries include but are not limited to traumatic brain injury (TBI) and spinal cord injury (SCI). CNS injuries remain a significant public health concern which demands reliable tools for rapid, on-sight, on-field, and point-of-care diagnostic (POC) solutions.
View Article and Find Full Text PDFThe electrothermal effect has been investigated extensively in microfluidics since the 1990s and has been suggested as a promising technique for fluid manipulations in lab-on-a-chip devices. The purpose of this article is to provide a timely overview of the previous works conducted in the AC electrothermal field to provide a comprehensive reference for researchers new to this field. First, electrokinetic phenomena are briefly introduced to show where the electrothermal effect stands, comparatively, versus other mechanisms.
View Article and Find Full Text PDF