SLAS Discov
December 2024
GLUT9/SLC2A9 is a urate transporter and takes a fundamental role in the maintenance of normal serum urate levels. GLUT9 is the sole transporter of reabsorbed urate from renal epithelial cells to blood, thus making it an ideal pharmacological target for the development of urate-lowering drugs. None of the three currently available assays for studying GLUT9 pharmacological inhibition can support a high throughput drug discovery screening campaign.
View Article and Find Full Text PDFWith over 450 genes, solute carriers (SLCs) constitute the largest transporter superfamily responsible for the uptake and efflux of nutrients, metabolites, and xenobiotics in human cells. SLCs are associated with a wide variety of human diseases, including cancer, diabetes, and metabolic and neurological disorders. They represent an important therapeutic target class that remains only partly exploited as therapeutics that target SLCs are scarce.
View Article and Find Full Text PDFThis article presents detailed descriptions of procedures and troubleshooting tips for solid-supported membrane (SSM)-based electrophysiology assays (SURFE²R) to measure electrogenic solute carrier transporter proteins (SLCs) and assess the effects of compounds that modulate their activity. SURFE²R allows the use of the standard 96-well format, making it an ideal platform for tertiary assays in a drug-discovery campaign. The assays are performed with cell-line-derived membrane fractions or proteoliposomes containing the transporter of interest.
View Article and Find Full Text PDFAcoustic droplet ejection mass spectrometry (ADE-MS) has recently emerged as a promising label-free, MS-based readout method for high throughput screening (HTS) campaigns in early pharmaceutical drug discovery, since it enables high-speed analysis directly from 384- or 1536-well plates. In this manuscript we describe our characterization of an ADE-MS based high sample content enzymatic assay for mutant isocitrate dehydrogenase 1 (IDH1) R132H with a strong focus on assay development. IDH1 R132H has become a very attractive therapeutic target in the field of antitumor drug discovery, and several pharmaceutical companies have attempted to develop novel small molecule inhibitors against mutant IDH1.
View Article and Find Full Text PDFClassical high-throughput screening (HTS) technologies for the analysis of ionic currents across biological membranes can be performed using fluorescence-based, radioactive, and mass spectrometry (MS)-based uptake assays. These assays provide rapid results for pharmacological HTS, but the underlying, indirect analytical character of these assays can be linked to high false-positive hit rates. Thus, orthogonal and secondary assays using more biological target-based technologies are indispensable for further compound validation and optimization.
View Article and Find Full Text PDFNonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease that can lead to irreversible liver cirrhosis and cancer. Early diagnosis of NASH is vital to detect disease before it becomes life-threatening, yet noninvasively differentiating NASH from simple steatosis is challenging. Herein, bifunctional probes have been developed that target the hepatocyte-specific asialoglycoprotein receptor (ASGPR), the expression of which decreases during NASH progression.
View Article and Find Full Text PDFCurr Protoc Pharmacol
December 2016
Over the last six decades, voltage-gated sodium (Na ) channels have attracted a great deal of scientific and pharmaceutical interest, driving fundamental advances in both biology and technology. The structure and physiological function of these channels have been extensively studied; clinical and genetic data have uncovered their implication in diseases such as epilepsy, arrhythmias, and pain, bringing them into focus as current and future drug targets. While different techniques have been established to record the activity of Na channels, proper determination of their properties still presents serious challenges, depending upon the experimental conditions and the desired subtype of channel to be characterized.
View Article and Find Full Text PDFThe electron transport chain (ETC) couples electron transfer between donors and acceptors with proton transport across the inner mitochondrial membrane. The resulting electrochemical proton gradient is used to generate chemical energy in the form of adenosine triphosphate (ATP). Proton transfer is based on the activity of complex I-V proteins in the ETC.
View Article and Find Full Text PDFTRPC channels are a family of nonselective cation channels that regulate ion homeostasis and intracellular Ca(2+) signaling in numerous cell types. Important physiological functions such as vasoregulation, neuronal growth, and pheromone recognition have been assigned to this class of ion channels. Despite their physiological relevance, few selective pharmacological tools are available to study TRPC channel function.
View Article and Find Full Text PDFIon transporters are emerging targets of increasing importance to the pharmaceutical industry because of their relevance to a wide range of numerous indications of cardiovascular, metabolic, and inflammatory diseases. However, traditional ion transporter assay technologies using radioactive or fluorescent ligands and substrates or manual patch clamping suffer from several problems: limited sensitivity and robustness, significant numbers of false positives and false negatives, and cost. The authors describe a novel method for the measurement of ion transporters using cell-free electrophysiology based on the SURFE (2) R (surface electrogenic event reader) technology platform.
View Article and Find Full Text PDFThe aim of this study was to assess the effects of the Na+-H+ exchange inhibitor cariporide on left ventricular (LV) morphology and function as well as inflammation in rabbits with heart failure. Rabbits with myocardial infarction (MI) and sham controls were randomized to receive either standard chow or chow supplemented with cariporide for 9 weeks. LV morphology was determined by echocardiography.
View Article and Find Full Text PDFUnlabelled: Human TWIK-related K(+) channels (TREK-1) stabilize the membrane potential (mp) of neurons and have a major role in the regulation of membrane excitability. In view of their physiological significance, interaction of bupivacaine with TREK-1 channels may be clinically important. Our aim was to characterize with the patch-clamp technique the properties of human TREK-1 channels and the effects of bupivacaine on these channels expressed in Chinese hamster ovary (CHO) cells.
View Article and Find Full Text PDF