Publications by authors named "Thomas Lagkas"

Modern Healthcare cyberphysical systems have begun to rely more and more on distributed AI leveraging the power of Federated Learning (FL). Its ability to train Machine Learning (ML) and Deep Learning (DL) models for the wide variety of medical fields, while at the same time fortifying the privacy of the sensitive information that are present in the medical sector, makes the FL technology a necessary tool in modern health and medical systems. Unfortunately, due to the polymorphy of distributed data and the shortcomings of distributed learning, the local training of Federated models sometimes proves inadequate and thus negatively imposes the federated learning optimization process and in extend in the subsequent performance of the rest Federated models.

View Article and Find Full Text PDF

The coverage path planning (CPP) algorithms aim to cover the total area of interest with minimum overlapping. The goal of the CPP algorithms is to minimize the total covering path and execution time. Significant research has been done in robotics, particularly for multi-unmanned unmanned aerial vehicles (UAVs) cooperation and energy efficiency in CPP problems.

View Article and Find Full Text PDF

Internet of Things (IoT) is a concept adopted in nearly every aspect of human life, leading to an explosive utilization of intelligent devices. Notably, such solutions are especially integrated in the industrial sector, to allow the remote monitoring and control of critical infrastructure. Such global integration of IoT solutions has led to an expanded attack surface against IoT-enabled infrastructures.

View Article and Find Full Text PDF

Unmanned aerial vehicles (UAVs) in the role of flying anchor nodes have been proposed to assist the localisation of terrestrial Internet of Things (IoT) sensors and provide relay services in the context of the upcoming 6G networks. This paper considered the objective of tracing a mobile IoT device of unknown location, using a group of UAVs that were equipped with received signal strength indicator (RSSI) sensors. The UAVs employed measurements of the target's radio frequency (RF) signal power to approach the target as quickly as possible.

View Article and Find Full Text PDF

Intentional islanding is a corrective procedure that aims to protect the stability of the power system during an emergency, by dividing the grid into several partitions and isolating the elements that would cause cascading failures. This paper proposes a deep learning method to solve the problem of intentional islanding in an end-to-end manner. Two types of loss functions are examined for the graph partitioning task, and a loss function is added on the deep learning model, aiming to minimise the load-generation imbalance in the formed islands.

View Article and Find Full Text PDF

The continuous monitoring of chronic diseases serves as one of the cornerstones in the efforts to improve the quality of life of patients and maintain the healthcare services provided to them. This study aims to provide an in-depth understanding of the perspectives of healthcare professionals on using sensor-based networks (SBN) used for remote and continuous monitoring of patients with chronic illness in Kosovo, a developing country. A qualitative research method was used to interview 26 healthcare professionals.

View Article and Find Full Text PDF

Unmanned aerial vehicles (UAVs) have enormous potential in enabling new applications in various areas, ranging from military, security, medicine, and surveillance to traffic-monitoring applications. Lately, there has been heavy investment in the development of UAVs and multi-UAVs systems that can collaborate and complete missions more efficiently and economically. Emerging technologies such as 4G/5G networks have significant potential on UAVs equipped with cameras, sensors, and GPS receivers in delivering Internet of Things (IoT) services from great heights, creating an airborne domain of the IoT.

View Article and Find Full Text PDF