Coupling between 5-bromoimidazo[1,5-a]pyridinium salts and malonate or arylacetate esters leads to a facile and straightforward access to the new mesoionic, fused, tricyclic system of imidazo[2,1,5-cd]indolizinium-3-olate. Mechanistic studies show that the reaction pathway consists of nucleophilic aromatic substitution on the cationic, bicyclic heterocycle by an enolate-type moiety and in the nucleophilic attack of a transient free N-heterocyclic carbene (NHC) species on the ester group; the relative order of these two steps depends on the nature of the starting ester. This work highlights the valuable implementation of free NHC species as key intermediates in synthetic chemistry, beyond their classical use as stabilizing ligands or organocatalysts.
View Article and Find Full Text PDFWe use large-scale molecular dynamics simulations with a coarse-grained model to investigate the self-assembly of solvent-free grafted nanoparticles into thin free-standing films. Two important findings are highlighted. First, for appropriately chosen values of system parameters the nanoparticles spontaneously assemble into monolayer thick films.
View Article and Find Full Text PDFA generalization of the recent version of the statistical associating fluid theory for variable range Mie potentials [Lafitte et al., J. Chem.
View Article and Find Full Text PDFA highly accurate equation of state (EOS) for chain molecules formed from spherical segments interacting through Mie potentials (i.e., a generalized Lennard-Jones form with variable repulsive and attractive exponents) is presented.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2012
Grand canonical Monte Carlo and histogram reweighting techniques are used to study the fluid-phase behavior of an athermal system of colloids and nonadsorbing polymers on a fine lattice in the "protein limit," where polymer dimensions exceed those of the colloids. The main parameters are the chains' radius of gyration, R_{g}, the diameter of the colloids, σ_{c}, and the monomer diameter, σ_{s}. The phase behavior is controlled by the macroscopic size ratio, q_{r}=2R_{g}/σ_{c}, and the microscopic size ratio, d=σ_{s}/σ_{c}.
View Article and Find Full Text PDFAn application of the "top-down" concept for the development of accurate coarse-grained intermolecular potentials of complex fluids is presented. With the more common "bottom-up" procedure, coarse-grained models are constructed from a suitable simplification of a detailed atomistic representation, and small adjustments to the intermolecular parameters are made by comparison with limited experimental data where necessary. In contrast, in the top-down approach, a molecular-based equation of state is used to obtain an effective coarse-grained intermolecular potential that reproduces the macroscopic experimental thermophysical properties over a wide range of conditions.
View Article and Find Full Text PDFThis work is dedicated to the simultaneous application of the gradient theory of fluid interfaces and Monte Carlo molecular simulations for the description of the interfacial behavior of the methane/water mixture. Macroscopic (interfacial tension, adsorption) and microscopic (density profiles, interfacial thickness) properties are investigated. The gradient theory is coupled in this work with the SAFT-VR Mie equation of state.
View Article and Find Full Text PDFThe temperature and pressure dependence of isobaric thermal expansivity, α(p), in liquids is discussed in this paper. Reported literature data allow general trends in this property that are consistent with experimental evidence to be established. Thus, a negative pressure dependence is to be expected except around the critical point.
View Article and Find Full Text PDFThe Gradient Theory of fluid interfaces is for the first time combined with the SAFT-VR Mie EOS to model the interfacial properties of the water/CO(2) mixture. As a preliminary test of the performance of the coupling between both theories, liquid-vapor interfacial properties of pure water have been determined. The complex temperature dependence of the surface tension of water can be accurately reproduced, and the interfacial thickness is in good agreement with experimental data and simulation results.
View Article and Find Full Text PDFIn a first part, interfacial properties of a pure monoatomic fluid interacting through the Mie n-6 potential (n=8, 10, 12, and 20) have been studied using extensive molecular simulations. Monte Carlo and molecular dynamics simulations have been employed, using, respectively, the test area approach and the mechanic route. In order to yield reference values, simulations have been performed with a cutoff radius equal to 10sigma, which is shown to be sufficient to avoid long range corrections.
View Article and Find Full Text PDFMolecular dynamics (MD) simulations of direct and derivative thermodynamic properties of the Mie n-6 fluid (n=8, 10, and 12) have been performed for liquid to supercritical states. Using the results, an in depth test of the monomer-monomer interaction estimation of a recently derived statistical associating fluid theory of variable range (SAFT-VR) equation of state [Lafitte et al., J.
View Article and Find Full Text PDFA recently derived version of the statistical associating fluid theory (SAFT), denoted as SAFT-VR Mie, which incorporates the Mie potentials within the SAFT-VR framework to model the monomer segment interactions (Lafitte et al. J. Chem.
View Article and Find Full Text PDFA modified statistical associating fluid theory (SAFT) with variable range version is presented using the family of m-n Mie potentials. The use of this intermolecular potential for modeling repulsion-dispersion interactions between the monomer segments, together with a new method for optimizing the molecular parameters of the equation of state, is found to give a very accurate description of both vapor-liquid equilibria and compressed liquid bulk properties (volumetric and derivative properties) for long-chain n-alkanes. This new equation improves other SAFT-like equations of state which fail to describe derivative properties such as the isothermal compressibility and the speed of sound in the condensed liquid phase.
View Article and Find Full Text PDF